|
|
// https://d3js.org/d3-quadtree/ Version 1.0.3. Copyright 2017 Mike Bostock.
|
|
|
(function (global, factory) {
|
|
|
typeof exports === 'object' && typeof module !== 'undefined' ? factory(exports) :
|
|
|
typeof define === 'function' && define.amd ? define(['exports'], factory) :
|
|
|
(factory((global.d3 = global.d3 || {})));
|
|
|
}(this, (function (exports) { 'use strict';
|
|
|
|
|
|
var tree_add = function(d) {
|
|
|
var x = +this._x.call(null, d),
|
|
|
y = +this._y.call(null, d);
|
|
|
return add(this.cover(x, y), x, y, d);
|
|
|
};
|
|
|
|
|
|
function add(tree, x, y, d) {
|
|
|
if (isNaN(x) || isNaN(y)) return tree; // ignore invalid points
|
|
|
|
|
|
var parent,
|
|
|
node = tree._root,
|
|
|
leaf = {data: d},
|
|
|
x0 = tree._x0,
|
|
|
y0 = tree._y0,
|
|
|
x1 = tree._x1,
|
|
|
y1 = tree._y1,
|
|
|
xm,
|
|
|
ym,
|
|
|
xp,
|
|
|
yp,
|
|
|
right,
|
|
|
bottom,
|
|
|
i,
|
|
|
j;
|
|
|
|
|
|
// If the tree is empty, initialize the root as a leaf.
|
|
|
if (!node) return tree._root = leaf, tree;
|
|
|
|
|
|
// Find the existing leaf for the new point, or add it.
|
|
|
while (node.length) {
|
|
|
if (right = x >= (xm = (x0 + x1) / 2)) x0 = xm; else x1 = xm;
|
|
|
if (bottom = y >= (ym = (y0 + y1) / 2)) y0 = ym; else y1 = ym;
|
|
|
if (parent = node, !(node = node[i = bottom << 1 | right])) return parent[i] = leaf, tree;
|
|
|
}
|
|
|
|
|
|
// Is the new point is exactly coincident with the existing point?
|
|
|
xp = +tree._x.call(null, node.data);
|
|
|
yp = +tree._y.call(null, node.data);
|
|
|
if (x === xp && y === yp) return leaf.next = node, parent ? parent[i] = leaf : tree._root = leaf, tree;
|
|
|
|
|
|
// Otherwise, split the leaf node until the old and new point are separated.
|
|
|
do {
|
|
|
parent = parent ? parent[i] = new Array(4) : tree._root = new Array(4);
|
|
|
if (right = x >= (xm = (x0 + x1) / 2)) x0 = xm; else x1 = xm;
|
|
|
if (bottom = y >= (ym = (y0 + y1) / 2)) y0 = ym; else y1 = ym;
|
|
|
} while ((i = bottom << 1 | right) === (j = (yp >= ym) << 1 | (xp >= xm)));
|
|
|
return parent[j] = node, parent[i] = leaf, tree;
|
|
|
}
|
|
|
|
|
|
function addAll(data) {
|
|
|
var d, i, n = data.length,
|
|
|
x,
|
|
|
y,
|
|
|
xz = new Array(n),
|
|
|
yz = new Array(n),
|
|
|
x0 = Infinity,
|
|
|
y0 = Infinity,
|
|
|
x1 = -Infinity,
|
|
|
y1 = -Infinity;
|
|
|
|
|
|
// Compute the points and their extent.
|
|
|
for (i = 0; i < n; ++i) {
|
|
|
if (isNaN(x = +this._x.call(null, d = data[i])) || isNaN(y = +this._y.call(null, d))) continue;
|
|
|
xz[i] = x;
|
|
|
yz[i] = y;
|
|
|
if (x < x0) x0 = x;
|
|
|
if (x > x1) x1 = x;
|
|
|
if (y < y0) y0 = y;
|
|
|
if (y > y1) y1 = y;
|
|
|
}
|
|
|
|
|
|
// If there were no (valid) points, inherit the existing extent.
|
|
|
if (x1 < x0) x0 = this._x0, x1 = this._x1;
|
|
|
if (y1 < y0) y0 = this._y0, y1 = this._y1;
|
|
|
|
|
|
// Expand the tree to cover the new points.
|
|
|
this.cover(x0, y0).cover(x1, y1);
|
|
|
|
|
|
// Add the new points.
|
|
|
for (i = 0; i < n; ++i) {
|
|
|
add(this, xz[i], yz[i], data[i]);
|
|
|
}
|
|
|
|
|
|
return this;
|
|
|
}
|
|
|
|
|
|
var tree_cover = function(x, y) {
|
|
|
if (isNaN(x = +x) || isNaN(y = +y)) return this; // ignore invalid points
|
|
|
|
|
|
var x0 = this._x0,
|
|
|
y0 = this._y0,
|
|
|
x1 = this._x1,
|
|
|
y1 = this._y1;
|
|
|
|
|
|
// If the quadtree has no extent, initialize them.
|
|
|
// Integer extent are necessary so that if we later double the extent,
|
|
|
// the existing quadrant boundaries don’t change due to floating point error!
|
|
|
if (isNaN(x0)) {
|
|
|
x1 = (x0 = Math.floor(x)) + 1;
|
|
|
y1 = (y0 = Math.floor(y)) + 1;
|
|
|
}
|
|
|
|
|
|
// Otherwise, double repeatedly to cover.
|
|
|
else if (x0 > x || x > x1 || y0 > y || y > y1) {
|
|
|
var z = x1 - x0,
|
|
|
node = this._root,
|
|
|
parent,
|
|
|
i;
|
|
|
|
|
|
switch (i = (y < (y0 + y1) / 2) << 1 | (x < (x0 + x1) / 2)) {
|
|
|
case 0: {
|
|
|
do parent = new Array(4), parent[i] = node, node = parent;
|
|
|
while (z *= 2, x1 = x0 + z, y1 = y0 + z, x > x1 || y > y1);
|
|
|
break;
|
|
|
}
|
|
|
case 1: {
|
|
|
do parent = new Array(4), parent[i] = node, node = parent;
|
|
|
while (z *= 2, x0 = x1 - z, y1 = y0 + z, x0 > x || y > y1);
|
|
|
break;
|
|
|
}
|
|
|
case 2: {
|
|
|
do parent = new Array(4), parent[i] = node, node = parent;
|
|
|
while (z *= 2, x1 = x0 + z, y0 = y1 - z, x > x1 || y0 > y);
|
|
|
break;
|
|
|
}
|
|
|
case 3: {
|
|
|
do parent = new Array(4), parent[i] = node, node = parent;
|
|
|
while (z *= 2, x0 = x1 - z, y0 = y1 - z, x0 > x || y0 > y);
|
|
|
break;
|
|
|
}
|
|
|
}
|
|
|
|
|
|
if (this._root && this._root.length) this._root = node;
|
|
|
}
|
|
|
|
|
|
// If the quadtree covers the point already, just return.
|
|
|
else return this;
|
|
|
|
|
|
this._x0 = x0;
|
|
|
this._y0 = y0;
|
|
|
this._x1 = x1;
|
|
|
this._y1 = y1;
|
|
|
return this;
|
|
|
};
|
|
|
|
|
|
var tree_data = function() {
|
|
|
var data = [];
|
|
|
this.visit(function(node) {
|
|
|
if (!node.length) do data.push(node.data); while (node = node.next)
|
|
|
});
|
|
|
return data;
|
|
|
};
|
|
|
|
|
|
var tree_extent = function(_) {
|
|
|
return arguments.length
|
|
|
? this.cover(+_[0][0], +_[0][1]).cover(+_[1][0], +_[1][1])
|
|
|
: isNaN(this._x0) ? undefined : [[this._x0, this._y0], [this._x1, this._y1]];
|
|
|
};
|
|
|
|
|
|
var Quad = function(node, x0, y0, x1, y1) {
|
|
|
this.node = node;
|
|
|
this.x0 = x0;
|
|
|
this.y0 = y0;
|
|
|
this.x1 = x1;
|
|
|
this.y1 = y1;
|
|
|
};
|
|
|
|
|
|
var tree_find = function(x, y, radius) {
|
|
|
var data,
|
|
|
x0 = this._x0,
|
|
|
y0 = this._y0,
|
|
|
x1,
|
|
|
y1,
|
|
|
x2,
|
|
|
y2,
|
|
|
x3 = this._x1,
|
|
|
y3 = this._y1,
|
|
|
quads = [],
|
|
|
node = this._root,
|
|
|
q,
|
|
|
i;
|
|
|
|
|
|
if (node) quads.push(new Quad(node, x0, y0, x3, y3));
|
|
|
if (radius == null) radius = Infinity;
|
|
|
else {
|
|
|
x0 = x - radius, y0 = y - radius;
|
|
|
x3 = x + radius, y3 = y + radius;
|
|
|
radius *= radius;
|
|
|
}
|
|
|
|
|
|
while (q = quads.pop()) {
|
|
|
|
|
|
// Stop searching if this quadrant can’t contain a closer node.
|
|
|
if (!(node = q.node)
|
|
|
|| (x1 = q.x0) > x3
|
|
|
|| (y1 = q.y0) > y3
|
|
|
|| (x2 = q.x1) < x0
|
|
|
|| (y2 = q.y1) < y0) continue;
|
|
|
|
|
|
// Bisect the current quadrant.
|
|
|
if (node.length) {
|
|
|
var xm = (x1 + x2) / 2,
|
|
|
ym = (y1 + y2) / 2;
|
|
|
|
|
|
quads.push(
|
|
|
new Quad(node[3], xm, ym, x2, y2),
|
|
|
new Quad(node[2], x1, ym, xm, y2),
|
|
|
new Quad(node[1], xm, y1, x2, ym),
|
|
|
new Quad(node[0], x1, y1, xm, ym)
|
|
|
);
|
|
|
|
|
|
// Visit the closest quadrant first.
|
|
|
if (i = (y >= ym) << 1 | (x >= xm)) {
|
|
|
q = quads[quads.length - 1];
|
|
|
quads[quads.length - 1] = quads[quads.length - 1 - i];
|
|
|
quads[quads.length - 1 - i] = q;
|
|
|
}
|
|
|
}
|
|
|
|
|
|
// Visit this point. (Visiting coincident points isn’t necessary!)
|
|
|
else {
|
|
|
var dx = x - +this._x.call(null, node.data),
|
|
|
dy = y - +this._y.call(null, node.data),
|
|
|
d2 = dx * dx + dy * dy;
|
|
|
if (d2 < radius) {
|
|
|
var d = Math.sqrt(radius = d2);
|
|
|
x0 = x - d, y0 = y - d;
|
|
|
x3 = x + d, y3 = y + d;
|
|
|
data = node.data;
|
|
|
}
|
|
|
}
|
|
|
}
|
|
|
|
|
|
return data;
|
|
|
};
|
|
|
|
|
|
var tree_remove = function(d) {
|
|
|
if (isNaN(x = +this._x.call(null, d)) || isNaN(y = +this._y.call(null, d))) return this; // ignore invalid points
|
|
|
|
|
|
var parent,
|
|
|
node = this._root,
|
|
|
retainer,
|
|
|
previous,
|
|
|
next,
|
|
|
x0 = this._x0,
|
|
|
y0 = this._y0,
|
|
|
x1 = this._x1,
|
|
|
y1 = this._y1,
|
|
|
x,
|
|
|
y,
|
|
|
xm,
|
|
|
ym,
|
|
|
right,
|
|
|
bottom,
|
|
|
i,
|
|
|
j;
|
|
|
|
|
|
// If the tree is empty, initialize the root as a leaf.
|
|
|
if (!node) return this;
|
|
|
|
|
|
// Find the leaf node for the point.
|
|
|
// While descending, also retain the deepest parent with a non-removed sibling.
|
|
|
if (node.length) while (true) {
|
|
|
if (right = x >= (xm = (x0 + x1) / 2)) x0 = xm; else x1 = xm;
|
|
|
if (bottom = y >= (ym = (y0 + y1) / 2)) y0 = ym; else y1 = ym;
|
|
|
if (!(parent = node, node = node[i = bottom << 1 | right])) return this;
|
|
|
if (!node.length) break;
|
|
|
if (parent[(i + 1) & 3] || parent[(i + 2) & 3] || parent[(i + 3) & 3]) retainer = parent, j = i;
|
|
|
}
|
|
|
|
|
|
// Find the point to remove.
|
|
|
while (node.data !== d) if (!(previous = node, node = node.next)) return this;
|
|
|
if (next = node.next) delete node.next;
|
|
|
|
|
|
// If there are multiple coincident points, remove just the point.
|
|
|
if (previous) return (next ? previous.next = next : delete previous.next), this;
|
|
|
|
|
|
// If this is the root point, remove it.
|
|
|
if (!parent) return this._root = next, this;
|
|
|
|
|
|
// Remove this leaf.
|
|
|
next ? parent[i] = next : delete parent[i];
|
|
|
|
|
|
// If the parent now contains exactly one leaf, collapse superfluous parents.
|
|
|
if ((node = parent[0] || parent[1] || parent[2] || parent[3])
|
|
|
&& node === (parent[3] || parent[2] || parent[1] || parent[0])
|
|
|
&& !node.length) {
|
|
|
if (retainer) retainer[j] = node;
|
|
|
else this._root = node;
|
|
|
}
|
|
|
|
|
|
return this;
|
|
|
};
|
|
|
|
|
|
function removeAll(data) {
|
|
|
for (var i = 0, n = data.length; i < n; ++i) this.remove(data[i]);
|
|
|
return this;
|
|
|
}
|
|
|
|
|
|
var tree_root = function() {
|
|
|
return this._root;
|
|
|
};
|
|
|
|
|
|
var tree_size = function() {
|
|
|
var size = 0;
|
|
|
this.visit(function(node) {
|
|
|
if (!node.length) do ++size; while (node = node.next)
|
|
|
});
|
|
|
return size;
|
|
|
};
|
|
|
|
|
|
var tree_visit = function(callback) {
|
|
|
var quads = [], q, node = this._root, child, x0, y0, x1, y1;
|
|
|
if (node) quads.push(new Quad(node, this._x0, this._y0, this._x1, this._y1));
|
|
|
while (q = quads.pop()) {
|
|
|
if (!callback(node = q.node, x0 = q.x0, y0 = q.y0, x1 = q.x1, y1 = q.y1) && node.length) {
|
|
|
var xm = (x0 + x1) / 2, ym = (y0 + y1) / 2;
|
|
|
if (child = node[3]) quads.push(new Quad(child, xm, ym, x1, y1));
|
|
|
if (child = node[2]) quads.push(new Quad(child, x0, ym, xm, y1));
|
|
|
if (child = node[1]) quads.push(new Quad(child, xm, y0, x1, ym));
|
|
|
if (child = node[0]) quads.push(new Quad(child, x0, y0, xm, ym));
|
|
|
}
|
|
|
}
|
|
|
return this;
|
|
|
};
|
|
|
|
|
|
var tree_visitAfter = function(callback) {
|
|
|
var quads = [], next = [], q;
|
|
|
if (this._root) quads.push(new Quad(this._root, this._x0, this._y0, this._x1, this._y1));
|
|
|
while (q = quads.pop()) {
|
|
|
var node = q.node;
|
|
|
if (node.length) {
|
|
|
var child, x0 = q.x0, y0 = q.y0, x1 = q.x1, y1 = q.y1, xm = (x0 + x1) / 2, ym = (y0 + y1) / 2;
|
|
|
if (child = node[0]) quads.push(new Quad(child, x0, y0, xm, ym));
|
|
|
if (child = node[1]) quads.push(new Quad(child, xm, y0, x1, ym));
|
|
|
if (child = node[2]) quads.push(new Quad(child, x0, ym, xm, y1));
|
|
|
if (child = node[3]) quads.push(new Quad(child, xm, ym, x1, y1));
|
|
|
}
|
|
|
next.push(q);
|
|
|
}
|
|
|
while (q = next.pop()) {
|
|
|
callback(q.node, q.x0, q.y0, q.x1, q.y1);
|
|
|
}
|
|
|
return this;
|
|
|
};
|
|
|
|
|
|
function defaultX(d) {
|
|
|
return d[0];
|
|
|
}
|
|
|
|
|
|
var tree_x = function(_) {
|
|
|
return arguments.length ? (this._x = _, this) : this._x;
|
|
|
};
|
|
|
|
|
|
function defaultY(d) {
|
|
|
return d[1];
|
|
|
}
|
|
|
|
|
|
var tree_y = function(_) {
|
|
|
return arguments.length ? (this._y = _, this) : this._y;
|
|
|
};
|
|
|
|
|
|
function quadtree(nodes, x, y) {
|
|
|
var tree = new Quadtree(x == null ? defaultX : x, y == null ? defaultY : y, NaN, NaN, NaN, NaN);
|
|
|
return nodes == null ? tree : tree.addAll(nodes);
|
|
|
}
|
|
|
|
|
|
function Quadtree(x, y, x0, y0, x1, y1) {
|
|
|
this._x = x;
|
|
|
this._y = y;
|
|
|
this._x0 = x0;
|
|
|
this._y0 = y0;
|
|
|
this._x1 = x1;
|
|
|
this._y1 = y1;
|
|
|
this._root = undefined;
|
|
|
}
|
|
|
|
|
|
function leaf_copy(leaf) {
|
|
|
var copy = {data: leaf.data}, next = copy;
|
|
|
while (leaf = leaf.next) next = next.next = {data: leaf.data};
|
|
|
return copy;
|
|
|
}
|
|
|
|
|
|
var treeProto = quadtree.prototype = Quadtree.prototype;
|
|
|
|
|
|
treeProto.copy = function() {
|
|
|
var copy = new Quadtree(this._x, this._y, this._x0, this._y0, this._x1, this._y1),
|
|
|
node = this._root,
|
|
|
nodes,
|
|
|
child;
|
|
|
|
|
|
if (!node) return copy;
|
|
|
|
|
|
if (!node.length) return copy._root = leaf_copy(node), copy;
|
|
|
|
|
|
nodes = [{source: node, target: copy._root = new Array(4)}];
|
|
|
while (node = nodes.pop()) {
|
|
|
for (var i = 0; i < 4; ++i) {
|
|
|
if (child = node.source[i]) {
|
|
|
if (child.length) nodes.push({source: child, target: node.target[i] = new Array(4)});
|
|
|
else node.target[i] = leaf_copy(child);
|
|
|
}
|
|
|
}
|
|
|
}
|
|
|
|
|
|
return copy;
|
|
|
};
|
|
|
|
|
|
treeProto.add = tree_add;
|
|
|
treeProto.addAll = addAll;
|
|
|
treeProto.cover = tree_cover;
|
|
|
treeProto.data = tree_data;
|
|
|
treeProto.extent = tree_extent;
|
|
|
treeProto.find = tree_find;
|
|
|
treeProto.remove = tree_remove;
|
|
|
treeProto.removeAll = removeAll;
|
|
|
treeProto.root = tree_root;
|
|
|
treeProto.size = tree_size;
|
|
|
treeProto.visit = tree_visit;
|
|
|
treeProto.visitAfter = tree_visitAfter;
|
|
|
treeProto.x = tree_x;
|
|
|
treeProto.y = tree_y;
|
|
|
|
|
|
exports.quadtree = quadtree;
|
|
|
|
|
|
Object.defineProperty(exports, '__esModule', { value: true });
|
|
|
|
|
|
})));
|