// https://d3js.org/d3-quadtree/ Version 1.0.3. Copyright 2017 Mike Bostock. (function (global, factory) { typeof exports === 'object' && typeof module !== 'undefined' ? factory(exports) : typeof define === 'function' && define.amd ? define(['exports'], factory) : (factory((global.d3 = global.d3 || {}))); }(this, (function (exports) { 'use strict'; var tree_add = function(d) { var x = +this._x.call(null, d), y = +this._y.call(null, d); return add(this.cover(x, y), x, y, d); }; function add(tree, x, y, d) { if (isNaN(x) || isNaN(y)) return tree; // ignore invalid points var parent, node = tree._root, leaf = {data: d}, x0 = tree._x0, y0 = tree._y0, x1 = tree._x1, y1 = tree._y1, xm, ym, xp, yp, right, bottom, i, j; // If the tree is empty, initialize the root as a leaf. if (!node) return tree._root = leaf, tree; // Find the existing leaf for the new point, or add it. while (node.length) { if (right = x >= (xm = (x0 + x1) / 2)) x0 = xm; else x1 = xm; if (bottom = y >= (ym = (y0 + y1) / 2)) y0 = ym; else y1 = ym; if (parent = node, !(node = node[i = bottom << 1 | right])) return parent[i] = leaf, tree; } // Is the new point is exactly coincident with the existing point? xp = +tree._x.call(null, node.data); yp = +tree._y.call(null, node.data); if (x === xp && y === yp) return leaf.next = node, parent ? parent[i] = leaf : tree._root = leaf, tree; // Otherwise, split the leaf node until the old and new point are separated. do { parent = parent ? parent[i] = new Array(4) : tree._root = new Array(4); if (right = x >= (xm = (x0 + x1) / 2)) x0 = xm; else x1 = xm; if (bottom = y >= (ym = (y0 + y1) / 2)) y0 = ym; else y1 = ym; } while ((i = bottom << 1 | right) === (j = (yp >= ym) << 1 | (xp >= xm))); return parent[j] = node, parent[i] = leaf, tree; } function addAll(data) { var d, i, n = data.length, x, y, xz = new Array(n), yz = new Array(n), x0 = Infinity, y0 = Infinity, x1 = -Infinity, y1 = -Infinity; // Compute the points and their extent. for (i = 0; i < n; ++i) { if (isNaN(x = +this._x.call(null, d = data[i])) || isNaN(y = +this._y.call(null, d))) continue; xz[i] = x; yz[i] = y; if (x < x0) x0 = x; if (x > x1) x1 = x; if (y < y0) y0 = y; if (y > y1) y1 = y; } // If there were no (valid) points, inherit the existing extent. if (x1 < x0) x0 = this._x0, x1 = this._x1; if (y1 < y0) y0 = this._y0, y1 = this._y1; // Expand the tree to cover the new points. this.cover(x0, y0).cover(x1, y1); // Add the new points. for (i = 0; i < n; ++i) { add(this, xz[i], yz[i], data[i]); } return this; } var tree_cover = function(x, y) { if (isNaN(x = +x) || isNaN(y = +y)) return this; // ignore invalid points var x0 = this._x0, y0 = this._y0, x1 = this._x1, y1 = this._y1; // If the quadtree has no extent, initialize them. // Integer extent are necessary so that if we later double the extent, // the existing quadrant boundaries don’t change due to floating point error! if (isNaN(x0)) { x1 = (x0 = Math.floor(x)) + 1; y1 = (y0 = Math.floor(y)) + 1; } // Otherwise, double repeatedly to cover. else if (x0 > x || x > x1 || y0 > y || y > y1) { var z = x1 - x0, node = this._root, parent, i; switch (i = (y < (y0 + y1) / 2) << 1 | (x < (x0 + x1) / 2)) { case 0: { do parent = new Array(4), parent[i] = node, node = parent; while (z *= 2, x1 = x0 + z, y1 = y0 + z, x > x1 || y > y1); break; } case 1: { do parent = new Array(4), parent[i] = node, node = parent; while (z *= 2, x0 = x1 - z, y1 = y0 + z, x0 > x || y > y1); break; } case 2: { do parent = new Array(4), parent[i] = node, node = parent; while (z *= 2, x1 = x0 + z, y0 = y1 - z, x > x1 || y0 > y); break; } case 3: { do parent = new Array(4), parent[i] = node, node = parent; while (z *= 2, x0 = x1 - z, y0 = y1 - z, x0 > x || y0 > y); break; } } if (this._root && this._root.length) this._root = node; } // If the quadtree covers the point already, just return. else return this; this._x0 = x0; this._y0 = y0; this._x1 = x1; this._y1 = y1; return this; }; var tree_data = function() { var data = []; this.visit(function(node) { if (!node.length) do data.push(node.data); while (node = node.next) }); return data; }; var tree_extent = function(_) { return arguments.length ? this.cover(+_[0][0], +_[0][1]).cover(+_[1][0], +_[1][1]) : isNaN(this._x0) ? undefined : [[this._x0, this._y0], [this._x1, this._y1]]; }; var Quad = function(node, x0, y0, x1, y1) { this.node = node; this.x0 = x0; this.y0 = y0; this.x1 = x1; this.y1 = y1; }; var tree_find = function(x, y, radius) { var data, x0 = this._x0, y0 = this._y0, x1, y1, x2, y2, x3 = this._x1, y3 = this._y1, quads = [], node = this._root, q, i; if (node) quads.push(new Quad(node, x0, y0, x3, y3)); if (radius == null) radius = Infinity; else { x0 = x - radius, y0 = y - radius; x3 = x + radius, y3 = y + radius; radius *= radius; } while (q = quads.pop()) { // Stop searching if this quadrant can’t contain a closer node. if (!(node = q.node) || (x1 = q.x0) > x3 || (y1 = q.y0) > y3 || (x2 = q.x1) < x0 || (y2 = q.y1) < y0) continue; // Bisect the current quadrant. if (node.length) { var xm = (x1 + x2) / 2, ym = (y1 + y2) / 2; quads.push( new Quad(node[3], xm, ym, x2, y2), new Quad(node[2], x1, ym, xm, y2), new Quad(node[1], xm, y1, x2, ym), new Quad(node[0], x1, y1, xm, ym) ); // Visit the closest quadrant first. if (i = (y >= ym) << 1 | (x >= xm)) { q = quads[quads.length - 1]; quads[quads.length - 1] = quads[quads.length - 1 - i]; quads[quads.length - 1 - i] = q; } } // Visit this point. (Visiting coincident points isn’t necessary!) else { var dx = x - +this._x.call(null, node.data), dy = y - +this._y.call(null, node.data), d2 = dx * dx + dy * dy; if (d2 < radius) { var d = Math.sqrt(radius = d2); x0 = x - d, y0 = y - d; x3 = x + d, y3 = y + d; data = node.data; } } } return data; }; var tree_remove = function(d) { if (isNaN(x = +this._x.call(null, d)) || isNaN(y = +this._y.call(null, d))) return this; // ignore invalid points var parent, node = this._root, retainer, previous, next, x0 = this._x0, y0 = this._y0, x1 = this._x1, y1 = this._y1, x, y, xm, ym, right, bottom, i, j; // If the tree is empty, initialize the root as a leaf. if (!node) return this; // Find the leaf node for the point. // While descending, also retain the deepest parent with a non-removed sibling. if (node.length) while (true) { if (right = x >= (xm = (x0 + x1) / 2)) x0 = xm; else x1 = xm; if (bottom = y >= (ym = (y0 + y1) / 2)) y0 = ym; else y1 = ym; if (!(parent = node, node = node[i = bottom << 1 | right])) return this; if (!node.length) break; if (parent[(i + 1) & 3] || parent[(i + 2) & 3] || parent[(i + 3) & 3]) retainer = parent, j = i; } // Find the point to remove. while (node.data !== d) if (!(previous = node, node = node.next)) return this; if (next = node.next) delete node.next; // If there are multiple coincident points, remove just the point. if (previous) return (next ? previous.next = next : delete previous.next), this; // If this is the root point, remove it. if (!parent) return this._root = next, this; // Remove this leaf. next ? parent[i] = next : delete parent[i]; // If the parent now contains exactly one leaf, collapse superfluous parents. if ((node = parent[0] || parent[1] || parent[2] || parent[3]) && node === (parent[3] || parent[2] || parent[1] || parent[0]) && !node.length) { if (retainer) retainer[j] = node; else this._root = node; } return this; }; function removeAll(data) { for (var i = 0, n = data.length; i < n; ++i) this.remove(data[i]); return this; } var tree_root = function() { return this._root; }; var tree_size = function() { var size = 0; this.visit(function(node) { if (!node.length) do ++size; while (node = node.next) }); return size; }; var tree_visit = function(callback) { var quads = [], q, node = this._root, child, x0, y0, x1, y1; if (node) quads.push(new Quad(node, this._x0, this._y0, this._x1, this._y1)); while (q = quads.pop()) { if (!callback(node = q.node, x0 = q.x0, y0 = q.y0, x1 = q.x1, y1 = q.y1) && node.length) { var xm = (x0 + x1) / 2, ym = (y0 + y1) / 2; if (child = node[3]) quads.push(new Quad(child, xm, ym, x1, y1)); if (child = node[2]) quads.push(new Quad(child, x0, ym, xm, y1)); if (child = node[1]) quads.push(new Quad(child, xm, y0, x1, ym)); if (child = node[0]) quads.push(new Quad(child, x0, y0, xm, ym)); } } return this; }; var tree_visitAfter = function(callback) { var quads = [], next = [], q; if (this._root) quads.push(new Quad(this._root, this._x0, this._y0, this._x1, this._y1)); while (q = quads.pop()) { var node = q.node; if (node.length) { var child, x0 = q.x0, y0 = q.y0, x1 = q.x1, y1 = q.y1, xm = (x0 + x1) / 2, ym = (y0 + y1) / 2; if (child = node[0]) quads.push(new Quad(child, x0, y0, xm, ym)); if (child = node[1]) quads.push(new Quad(child, xm, y0, x1, ym)); if (child = node[2]) quads.push(new Quad(child, x0, ym, xm, y1)); if (child = node[3]) quads.push(new Quad(child, xm, ym, x1, y1)); } next.push(q); } while (q = next.pop()) { callback(q.node, q.x0, q.y0, q.x1, q.y1); } return this; }; function defaultX(d) { return d[0]; } var tree_x = function(_) { return arguments.length ? (this._x = _, this) : this._x; }; function defaultY(d) { return d[1]; } var tree_y = function(_) { return arguments.length ? (this._y = _, this) : this._y; }; function quadtree(nodes, x, y) { var tree = new Quadtree(x == null ? defaultX : x, y == null ? defaultY : y, NaN, NaN, NaN, NaN); return nodes == null ? tree : tree.addAll(nodes); } function Quadtree(x, y, x0, y0, x1, y1) { this._x = x; this._y = y; this._x0 = x0; this._y0 = y0; this._x1 = x1; this._y1 = y1; this._root = undefined; } function leaf_copy(leaf) { var copy = {data: leaf.data}, next = copy; while (leaf = leaf.next) next = next.next = {data: leaf.data}; return copy; } var treeProto = quadtree.prototype = Quadtree.prototype; treeProto.copy = function() { var copy = new Quadtree(this._x, this._y, this._x0, this._y0, this._x1, this._y1), node = this._root, nodes, child; if (!node) return copy; if (!node.length) return copy._root = leaf_copy(node), copy; nodes = [{source: node, target: copy._root = new Array(4)}]; while (node = nodes.pop()) { for (var i = 0; i < 4; ++i) { if (child = node.source[i]) { if (child.length) nodes.push({source: child, target: node.target[i] = new Array(4)}); else node.target[i] = leaf_copy(child); } } } return copy; }; treeProto.add = tree_add; treeProto.addAll = addAll; treeProto.cover = tree_cover; treeProto.data = tree_data; treeProto.extent = tree_extent; treeProto.find = tree_find; treeProto.remove = tree_remove; treeProto.removeAll = removeAll; treeProto.root = tree_root; treeProto.size = tree_size; treeProto.visit = tree_visit; treeProto.visitAfter = tree_visitAfter; treeProto.x = tree_x; treeProto.y = tree_y; exports.quadtree = quadtree; Object.defineProperty(exports, '__esModule', { value: true }); })));