You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

3046 lines
84 KiB

5 years ago
// https://d3js.org/d3-geo/ Version 1.9.1. Copyright 2017 Mike Bostock.
(function (global, factory) {
typeof exports === 'object' && typeof module !== 'undefined' ? factory(exports, require('d3-array')) :
typeof define === 'function' && define.amd ? define(['exports', 'd3-array'], factory) :
(factory((global.d3 = global.d3 || {}),global.d3));
}(this, (function (exports,d3Array) { 'use strict';
// Adds floating point numbers with twice the normal precision.
// Reference: J. R. Shewchuk, Adaptive Precision Floating-Point Arithmetic and
// Fast Robust Geometric Predicates, Discrete & Computational Geometry 18(3)
// 305363 (1997).
// Code adapted from GeographicLib by Charles F. F. Karney,
// http://geographiclib.sourceforge.net/
var adder = function() {
return new Adder;
};
function Adder() {
this.reset();
}
Adder.prototype = {
constructor: Adder,
reset: function() {
this.s = // rounded value
this.t = 0; // exact error
},
add: function(y) {
add(temp, y, this.t);
add(this, temp.s, this.s);
if (this.s) this.t += temp.t;
else this.s = temp.t;
},
valueOf: function() {
return this.s;
}
};
var temp = new Adder;
function add(adder, a, b) {
var x = adder.s = a + b,
bv = x - a,
av = x - bv;
adder.t = (a - av) + (b - bv);
}
var epsilon = 1e-6;
var epsilon2 = 1e-12;
var pi = Math.PI;
var halfPi = pi / 2;
var quarterPi = pi / 4;
var tau = pi * 2;
var degrees = 180 / pi;
var radians = pi / 180;
var abs = Math.abs;
var atan = Math.atan;
var atan2 = Math.atan2;
var cos = Math.cos;
var ceil = Math.ceil;
var exp = Math.exp;
var log = Math.log;
var pow = Math.pow;
var sin = Math.sin;
var sign = Math.sign || function(x) { return x > 0 ? 1 : x < 0 ? -1 : 0; };
var sqrt = Math.sqrt;
var tan = Math.tan;
function acos(x) {
return x > 1 ? 0 : x < -1 ? pi : Math.acos(x);
}
function asin(x) {
return x > 1 ? halfPi : x < -1 ? -halfPi : Math.asin(x);
}
function haversin(x) {
return (x = sin(x / 2)) * x;
}
function noop() {}
function streamGeometry(geometry, stream) {
if (geometry && streamGeometryType.hasOwnProperty(geometry.type)) {
streamGeometryType[geometry.type](geometry, stream);
}
}
var streamObjectType = {
Feature: function(object, stream) {
streamGeometry(object.geometry, stream);
},
FeatureCollection: function(object, stream) {
var features = object.features, i = -1, n = features.length;
while (++i < n) streamGeometry(features[i].geometry, stream);
}
};
var streamGeometryType = {
Sphere: function(object, stream) {
stream.sphere();
},
Point: function(object, stream) {
object = object.coordinates;
stream.point(object[0], object[1], object[2]);
},
MultiPoint: function(object, stream) {
var coordinates = object.coordinates, i = -1, n = coordinates.length;
while (++i < n) object = coordinates[i], stream.point(object[0], object[1], object[2]);
},
LineString: function(object, stream) {
streamLine(object.coordinates, stream, 0);
},
MultiLineString: function(object, stream) {
var coordinates = object.coordinates, i = -1, n = coordinates.length;
while (++i < n) streamLine(coordinates[i], stream, 0);
},
Polygon: function(object, stream) {
streamPolygon(object.coordinates, stream);
},
MultiPolygon: function(object, stream) {
var coordinates = object.coordinates, i = -1, n = coordinates.length;
while (++i < n) streamPolygon(coordinates[i], stream);
},
GeometryCollection: function(object, stream) {
var geometries = object.geometries, i = -1, n = geometries.length;
while (++i < n) streamGeometry(geometries[i], stream);
}
};
function streamLine(coordinates, stream, closed) {
var i = -1, n = coordinates.length - closed, coordinate;
stream.lineStart();
while (++i < n) coordinate = coordinates[i], stream.point(coordinate[0], coordinate[1], coordinate[2]);
stream.lineEnd();
}
function streamPolygon(coordinates, stream) {
var i = -1, n = coordinates.length;
stream.polygonStart();
while (++i < n) streamLine(coordinates[i], stream, 1);
stream.polygonEnd();
}
var geoStream = function(object, stream) {
if (object && streamObjectType.hasOwnProperty(object.type)) {
streamObjectType[object.type](object, stream);
} else {
streamGeometry(object, stream);
}
};
var areaRingSum = adder();
var areaSum = adder();
var lambda00;
var phi00;
var lambda0;
var cosPhi0;
var sinPhi0;
var areaStream = {
point: noop,
lineStart: noop,
lineEnd: noop,
polygonStart: function() {
areaRingSum.reset();
areaStream.lineStart = areaRingStart;
areaStream.lineEnd = areaRingEnd;
},
polygonEnd: function() {
var areaRing = +areaRingSum;
areaSum.add(areaRing < 0 ? tau + areaRing : areaRing);
this.lineStart = this.lineEnd = this.point = noop;
},
sphere: function() {
areaSum.add(tau);
}
};
function areaRingStart() {
areaStream.point = areaPointFirst;
}
function areaRingEnd() {
areaPoint(lambda00, phi00);
}
function areaPointFirst(lambda, phi) {
areaStream.point = areaPoint;
lambda00 = lambda, phi00 = phi;
lambda *= radians, phi *= radians;
lambda0 = lambda, cosPhi0 = cos(phi = phi / 2 + quarterPi), sinPhi0 = sin(phi);
}
function areaPoint(lambda, phi) {
lambda *= radians, phi *= radians;
phi = phi / 2 + quarterPi; // half the angular distance from south pole
// Spherical excess E for a spherical triangle with vertices: south pole,
// previous point, current point. Uses a formula derived from Cagnolis
// theorem. See Todhunter, Spherical Trig. (1871), Sec. 103, Eq. (2).
var dLambda = lambda - lambda0,
sdLambda = dLambda >= 0 ? 1 : -1,
adLambda = sdLambda * dLambda,
cosPhi = cos(phi),
sinPhi = sin(phi),
k = sinPhi0 * sinPhi,
u = cosPhi0 * cosPhi + k * cos(adLambda),
v = k * sdLambda * sin(adLambda);
areaRingSum.add(atan2(v, u));
// Advance the previous points.
lambda0 = lambda, cosPhi0 = cosPhi, sinPhi0 = sinPhi;
}
var area = function(object) {
areaSum.reset();
geoStream(object, areaStream);
return areaSum * 2;
};
function spherical(cartesian) {
return [atan2(cartesian[1], cartesian[0]), asin(cartesian[2])];
}
function cartesian(spherical) {
var lambda = spherical[0], phi = spherical[1], cosPhi = cos(phi);
return [cosPhi * cos(lambda), cosPhi * sin(lambda), sin(phi)];
}
function cartesianDot(a, b) {
return a[0] * b[0] + a[1] * b[1] + a[2] * b[2];
}
function cartesianCross(a, b) {
return [a[1] * b[2] - a[2] * b[1], a[2] * b[0] - a[0] * b[2], a[0] * b[1] - a[1] * b[0]];
}
// TODO return a
function cartesianAddInPlace(a, b) {
a[0] += b[0], a[1] += b[1], a[2] += b[2];
}
function cartesianScale(vector, k) {
return [vector[0] * k, vector[1] * k, vector[2] * k];
}
// TODO return d
function cartesianNormalizeInPlace(d) {
var l = sqrt(d[0] * d[0] + d[1] * d[1] + d[2] * d[2]);
d[0] /= l, d[1] /= l, d[2] /= l;
}
var lambda0$1;
var phi0;
var lambda1;
var phi1;
var lambda2;
var lambda00$1;
var phi00$1;
var p0;
var deltaSum = adder();
var ranges;
var range$1;
var boundsStream = {
point: boundsPoint,
lineStart: boundsLineStart,
lineEnd: boundsLineEnd,
polygonStart: function() {
boundsStream.point = boundsRingPoint;
boundsStream.lineStart = boundsRingStart;
boundsStream.lineEnd = boundsRingEnd;
deltaSum.reset();
areaStream.polygonStart();
},
polygonEnd: function() {
areaStream.polygonEnd();
boundsStream.point = boundsPoint;
boundsStream.lineStart = boundsLineStart;
boundsStream.lineEnd = boundsLineEnd;
if (areaRingSum < 0) lambda0$1 = -(lambda1 = 180), phi0 = -(phi1 = 90);
else if (deltaSum > epsilon) phi1 = 90;
else if (deltaSum < -epsilon) phi0 = -90;
range$1[0] = lambda0$1, range$1[1] = lambda1;
}
};
function boundsPoint(lambda, phi) {
ranges.push(range$1 = [lambda0$1 = lambda, lambda1 = lambda]);
if (phi < phi0) phi0 = phi;
if (phi > phi1) phi1 = phi;
}
function linePoint(lambda, phi) {
var p = cartesian([lambda * radians, phi * radians]);
if (p0) {
var normal = cartesianCross(p0, p),
equatorial = [normal[1], -normal[0], 0],
inflection = cartesianCross(equatorial, normal);
cartesianNormalizeInPlace(inflection);
inflection = spherical(inflection);
var delta = lambda - lambda2,
sign$$1 = delta > 0 ? 1 : -1,
lambdai = inflection[0] * degrees * sign$$1,
phii,
antimeridian = abs(delta) > 180;
if (antimeridian ^ (sign$$1 * lambda2 < lambdai && lambdai < sign$$1 * lambda)) {
phii = inflection[1] * degrees;
if (phii > phi1) phi1 = phii;
} else if (lambdai = (lambdai + 360) % 360 - 180, antimeridian ^ (sign$$1 * lambda2 < lambdai && lambdai < sign$$1 * lambda)) {
phii = -inflection[1] * degrees;
if (phii < phi0) phi0 = phii;
} else {
if (phi < phi0) phi0 = phi;
if (phi > phi1) phi1 = phi;
}
if (antimeridian) {
if (lambda < lambda2) {
if (angle(lambda0$1, lambda) > angle(lambda0$1, lambda1)) lambda1 = lambda;
} else {
if (angle(lambda, lambda1) > angle(lambda0$1, lambda1)) lambda0$1 = lambda;
}
} else {
if (lambda1 >= lambda0$1) {
if (lambda < lambda0$1) lambda0$1 = lambda;
if (lambda > lambda1) lambda1 = lambda;
} else {
if (lambda > lambda2) {
if (angle(lambda0$1, lambda) > angle(lambda0$1, lambda1)) lambda1 = lambda;
} else {
if (angle(lambda, lambda1) > angle(lambda0$1, lambda1)) lambda0$1 = lambda;
}
}
}
} else {
ranges.push(range$1 = [lambda0$1 = lambda, lambda1 = lambda]);
}
if (phi < phi0) phi0 = phi;
if (phi > phi1) phi1 = phi;
p0 = p, lambda2 = lambda;
}
function boundsLineStart() {
boundsStream.point = linePoint;
}
function boundsLineEnd() {
range$1[0] = lambda0$1, range$1[1] = lambda1;
boundsStream.point = boundsPoint;
p0 = null;
}
function boundsRingPoint(lambda, phi) {
if (p0) {
var delta = lambda - lambda2;
deltaSum.add(abs(delta) > 180 ? delta + (delta > 0 ? 360 : -360) : delta);
} else {
lambda00$1 = lambda, phi00$1 = phi;
}
areaStream.point(lambda, phi);
linePoint(lambda, phi);
}
function boundsRingStart() {
areaStream.lineStart();
}
function boundsRingEnd() {
boundsRingPoint(lambda00$1, phi00$1);
areaStream.lineEnd();
if (abs(deltaSum) > epsilon) lambda0$1 = -(lambda1 = 180);
range$1[0] = lambda0$1, range$1[1] = lambda1;
p0 = null;
}
// Finds the left-right distance between two longitudes.
// This is almost the same as (lambda1 - lambda0 + 360°) % 360°, except that we want
// the distance between ±180° to be 360°.
function angle(lambda0, lambda1) {
return (lambda1 -= lambda0) < 0 ? lambda1 + 360 : lambda1;
}
function rangeCompare(a, b) {
return a[0] - b[0];
}
function rangeContains(range$$1, x) {
return range$$1[0] <= range$$1[1] ? range$$1[0] <= x && x <= range$$1[1] : x < range$$1[0] || range$$1[1] < x;
}
var bounds = function(feature) {
var i, n, a, b, merged, deltaMax, delta;
phi1 = lambda1 = -(lambda0$1 = phi0 = Infinity);
ranges = [];
geoStream(feature, boundsStream);
// First, sort ranges by their minimum longitudes.
if (n = ranges.length) {
ranges.sort(rangeCompare);
// Then, merge any ranges that overlap.
for (i = 1, a = ranges[0], merged = [a]; i < n; ++i) {
b = ranges[i];
if (rangeContains(a, b[0]) || rangeContains(a, b[1])) {
if (angle(a[0], b[1]) > angle(a[0], a[1])) a[1] = b[1];
if (angle(b[0], a[1]) > angle(a[0], a[1])) a[0] = b[0];
} else {
merged.push(a = b);
}
}
// Finally, find the largest gap between the merged ranges.
// The final bounding box will be the inverse of this gap.
for (deltaMax = -Infinity, n = merged.length - 1, i = 0, a = merged[n]; i <= n; a = b, ++i) {
b = merged[i];
if ((delta = angle(a[1], b[0])) > deltaMax) deltaMax = delta, lambda0$1 = b[0], lambda1 = a[1];
}
}
ranges = range$1 = null;
return lambda0$1 === Infinity || phi0 === Infinity
? [[NaN, NaN], [NaN, NaN]]
: [[lambda0$1, phi0], [lambda1, phi1]];
};
var W0;
var W1;
var X0;
var Y0;
var Z0;
var X1;
var Y1;
var Z1;
var X2;
var Y2;
var Z2;
var lambda00$2;
var phi00$2;
var x0;
var y0;
var z0; // previous point
var centroidStream = {
sphere: noop,
point: centroidPoint,
lineStart: centroidLineStart,
lineEnd: centroidLineEnd,
polygonStart: function() {
centroidStream.lineStart = centroidRingStart;
centroidStream.lineEnd = centroidRingEnd;
},
polygonEnd: function() {
centroidStream.lineStart = centroidLineStart;
centroidStream.lineEnd = centroidLineEnd;
}
};
// Arithmetic mean of Cartesian vectors.
function centroidPoint(lambda, phi) {
lambda *= radians, phi *= radians;
var cosPhi = cos(phi);
centroidPointCartesian(cosPhi * cos(lambda), cosPhi * sin(lambda), sin(phi));
}
function centroidPointCartesian(x, y, z) {
++W0;
X0 += (x - X0) / W0;
Y0 += (y - Y0) / W0;
Z0 += (z - Z0) / W0;
}
function centroidLineStart() {
centroidStream.point = centroidLinePointFirst;
}
function centroidLinePointFirst(lambda, phi) {
lambda *= radians, phi *= radians;
var cosPhi = cos(phi);
x0 = cosPhi * cos(lambda);
y0 = cosPhi * sin(lambda);
z0 = sin(phi);
centroidStream.point = centroidLinePoint;
centroidPointCartesian(x0, y0, z0);
}
function centroidLinePoint(lambda, phi) {
lambda *= radians, phi *= radians;
var cosPhi = cos(phi),
x = cosPhi * cos(lambda),
y = cosPhi * sin(lambda),
z = sin(phi),
w = atan2(sqrt((w = y0 * z - z0 * y) * w + (w = z0 * x - x0 * z) * w + (w = x0 * y - y0 * x) * w), x0 * x + y0 * y + z0 * z);
W1 += w;
X1 += w * (x0 + (x0 = x));
Y1 += w * (y0 + (y0 = y));
Z1 += w * (z0 + (z0 = z));
centroidPointCartesian(x0, y0, z0);
}
function centroidLineEnd() {
centroidStream.point = centroidPoint;
}
// See J. E. Brock, The Inertia Tensor for a Spherical Triangle,
// J. Applied Mechanics 42, 239 (1975).
function centroidRingStart() {
centroidStream.point = centroidRingPointFirst;
}
function centroidRingEnd() {
centroidRingPoint(lambda00$2, phi00$2);
centroidStream.point = centroidPoint;
}
function centroidRingPointFirst(lambda, phi) {
lambda00$2 = lambda, phi00$2 = phi;
lambda *= radians, phi *= radians;
centroidStream.point = centroidRingPoint;
var cosPhi = cos(phi);
x0 = cosPhi * cos(lambda);
y0 = cosPhi * sin(lambda);
z0 = sin(phi);
centroidPointCartesian(x0, y0, z0);
}
function centroidRingPoint(lambda, phi) {
lambda *= radians, phi *= radians;
var cosPhi = cos(phi),
x = cosPhi * cos(lambda),
y = cosPhi * sin(lambda),
z = sin(phi),
cx = y0 * z - z0 * y,
cy = z0 * x - x0 * z,
cz = x0 * y - y0 * x,
m = sqrt(cx * cx + cy * cy + cz * cz),
w = asin(m), // line weight = angle
v = m && -w / m; // area weight multiplier
X2 += v * cx;
Y2 += v * cy;
Z2 += v * cz;
W1 += w;
X1 += w * (x0 + (x0 = x));
Y1 += w * (y0 + (y0 = y));
Z1 += w * (z0 + (z0 = z));
centroidPointCartesian(x0, y0, z0);
}
var centroid = function(object) {
W0 = W1 =
X0 = Y0 = Z0 =
X1 = Y1 = Z1 =
X2 = Y2 = Z2 = 0;
geoStream(object, centroidStream);
var x = X2,
y = Y2,
z = Z2,
m = x * x + y * y + z * z;
// If the area-weighted ccentroid is undefined, fall back to length-weighted ccentroid.
if (m < epsilon2) {
x = X1, y = Y1, z = Z1;
// If the feature has zero length, fall back to arithmetic mean of point vectors.
if (W1 < epsilon) x = X0, y = Y0, z = Z0;
m = x * x + y * y + z * z;
// If the feature still has an undefined ccentroid, then return.
if (m < epsilon2) return [NaN, NaN];
}
return [atan2(y, x) * degrees, asin(z / sqrt(m)) * degrees];
};
var constant = function(x) {
return function() {
return x;
};
};
var compose = function(a, b) {
function compose(x, y) {
return x = a(x, y), b(x[0], x[1]);
}
if (a.invert && b.invert) compose.invert = function(x, y) {
return x = b.invert(x, y), x && a.invert(x[0], x[1]);
};
return compose;
};
function rotationIdentity(lambda, phi) {
return [lambda > pi ? lambda - tau : lambda < -pi ? lambda + tau : lambda, phi];
}
rotationIdentity.invert = rotationIdentity;
function rotateRadians(deltaLambda, deltaPhi, deltaGamma) {
return (deltaLambda %= tau) ? (deltaPhi || deltaGamma ? compose(rotationLambda(deltaLambda), rotationPhiGamma(deltaPhi, deltaGamma))
: rotationLambda(deltaLambda))
: (deltaPhi || deltaGamma ? rotationPhiGamma(deltaPhi, deltaGamma)
: rotationIdentity);
}
function forwardRotationLambda(deltaLambda) {
return function(lambda, phi) {
return lambda += deltaLambda, [lambda > pi ? lambda - tau : lambda < -pi ? lambda + tau : lambda, phi];
};
}
function rotationLambda(deltaLambda) {
var rotation = forwardRotationLambda(deltaLambda);
rotation.invert = forwardRotationLambda(-deltaLambda);
return rotation;
}
function rotationPhiGamma(deltaPhi, deltaGamma) {
var cosDeltaPhi = cos(deltaPhi),
sinDeltaPhi = sin(deltaPhi),
cosDeltaGamma = cos(deltaGamma),
sinDeltaGamma = sin(deltaGamma);
function rotation(lambda, phi) {
var cosPhi = cos(phi),
x = cos(lambda) * cosPhi,
y = sin(lambda) * cosPhi,
z = sin(phi),
k = z * cosDeltaPhi + x * sinDeltaPhi;
return [
atan2(y * cosDeltaGamma - k * sinDeltaGamma, x * cosDeltaPhi - z * sinDeltaPhi),
asin(k * cosDeltaGamma + y * sinDeltaGamma)
];
}
rotation.invert = function(lambda, phi) {
var cosPhi = cos(phi),
x = cos(lambda) * cosPhi,
y = sin(lambda) * cosPhi,
z = sin(phi),
k = z * cosDeltaGamma - y * sinDeltaGamma;
return [
atan2(y * cosDeltaGamma + z * sinDeltaGamma, x * cosDeltaPhi + k * sinDeltaPhi),
asin(k * cosDeltaPhi - x * sinDeltaPhi)
];
};
return rotation;
}
var rotation = function(rotate) {
rotate = rotateRadians(rotate[0] * radians, rotate[1] * radians, rotate.length > 2 ? rotate[2] * radians : 0);
function forward(coordinates) {
coordinates = rotate(coordinates[0] * radians, coordinates[1] * radians);
return coordinates[0] *= degrees, coordinates[1] *= degrees, coordinates;
}
forward.invert = function(coordinates) {
coordinates = rotate.invert(coordinates[0] * radians, coordinates[1] * radians);
return coordinates[0] *= degrees, coordinates[1] *= degrees, coordinates;
};
return forward;
};
// Generates a circle centered at [0°, 0°], with a given radius and precision.
function circleStream(stream, radius, delta, direction, t0, t1) {
if (!delta) return;
var cosRadius = cos(radius),
sinRadius = sin(radius),
step = direction * delta;
if (t0 == null) {
t0 = radius + direction * tau;
t1 = radius - step / 2;
} else {
t0 = circleRadius(cosRadius, t0);
t1 = circleRadius(cosRadius, t1);
if (direction > 0 ? t0 < t1 : t0 > t1) t0 += direction * tau;
}
for (var point, t = t0; direction > 0 ? t > t1 : t < t1; t -= step) {
point = spherical([cosRadius, -sinRadius * cos(t), -sinRadius * sin(t)]);
stream.point(point[0], point[1]);
}
}
// Returns the signed angle of a cartesian point relative to [cosRadius, 0, 0].
function circleRadius(cosRadius, point) {
point = cartesian(point), point[0] -= cosRadius;
cartesianNormalizeInPlace(point);
var radius = acos(-point[1]);
return ((-point[2] < 0 ? -radius : radius) + tau - epsilon) % tau;
}
var circle = function() {
var center = constant([0, 0]),
radius = constant(90),
precision = constant(6),
ring,
rotate,
stream = {point: point};
function point(x, y) {
ring.push(x = rotate(x, y));
x[0] *= degrees, x[1] *= degrees;
}
function circle() {
var c = center.apply(this, arguments),
r = radius.apply(this, arguments) * radians,
p = precision.apply(this, arguments) * radians;
ring = [];
rotate = rotateRadians(-c[0] * radians, -c[1] * radians, 0).invert;
circleStream(stream, r, p, 1);
c = {type: "Polygon", coordinates: [ring]};
ring = rotate = null;
return c;
}
circle.center = function(_) {
return arguments.length ? (center = typeof _ === "function" ? _ : constant([+_[0], +_[1]]), circle) : center;
};
circle.radius = function(_) {
return arguments.length ? (radius = typeof _ === "function" ? _ : constant(+_), circle) : radius;
};
circle.precision = function(_) {
return arguments.length ? (precision = typeof _ === "function" ? _ : constant(+_), circle) : precision;
};
return circle;
};
var clipBuffer = function() {
var lines = [],
line;
return {
point: function(x, y) {
line.push([x, y]);
},
lineStart: function() {
lines.push(line = []);
},
lineEnd: noop,
rejoin: function() {
if (lines.length > 1) lines.push(lines.pop().concat(lines.shift()));
},
result: function() {
var result = lines;
lines = [];
line = null;
return result;
}
};
};
var pointEqual = function(a, b) {
return abs(a[0] - b[0]) < epsilon && abs(a[1] - b[1]) < epsilon;
};
function Intersection(point, points, other, entry) {
this.x = point;
this.z = points;
this.o = other; // another intersection
this.e = entry; // is an entry?
this.v = false; // visited
this.n = this.p = null; // next & previous
}
// A generalized polygon clipping algorithm: given a polygon that has been cut
// into its visible line segments, and rejoins the segments by interpolating
// along the clip edge.
var clipRejoin = function(segments, compareIntersection, startInside, interpolate, stream) {
var subject = [],
clip = [],
i,
n;
segments.forEach(function(segment) {
if ((n = segment.length - 1) <= 0) return;
var n, p0 = segment[0], p1 = segment[n], x;
// If the first and last points of a segment are coincident, then treat as a
// closed ring. TODO if all rings are closed, then the winding order of the
// exterior ring should be checked.
if (pointEqual(p0, p1)) {
stream.lineStart();
for (i = 0; i < n; ++i) stream.point((p0 = segment[i])[0], p0[1]);
stream.lineEnd();
return;
}
subject.push(x = new Intersection(p0, segment, null, true));
clip.push(x.o = new Intersection(p0, null, x, false));
subject.push(x = new Intersection(p1, segment, null, false));
clip.push(x.o = new Intersection(p1, null, x, true));
});
if (!subject.length) return;
clip.sort(compareIntersection);
link(subject);
link(clip);
for (i = 0, n = clip.length; i < n; ++i) {
clip[i].e = startInside = !startInside;
}
var start = subject[0],
points,
point;
while (1) {
// Find first unvisited intersection.
var current = start,
isSubject = true;
while (current.v) if ((current = current.n) === start) return;
points = current.z;
stream.lineStart();
do {
current.v = current.o.v = true;
if (current.e) {
if (isSubject) {
for (i = 0, n = points.length; i < n; ++i) stream.point((point = points[i])[0], point[1]);
} else {
interpolate(current.x, current.n.x, 1, stream);
}
current = current.n;
} else {
if (isSubject) {
points = current.p.z;
for (i = points.length - 1; i >= 0; --i) stream.point((point = points[i])[0], point[1]);
} else {
interpolate(current.x, current.p.x, -1, stream);
}
current = current.p;
}
current = current.o;
points = current.z;
isSubject = !isSubject;
} while (!current.v);
stream.lineEnd();
}
};
function link(array) {
if (!(n = array.length)) return;
var n,
i = 0,
a = array[0],
b;
while (++i < n) {
a.n = b = array[i];
b.p = a;
a = b;
}
a.n = b = array[0];
b.p = a;
}
var sum = adder();
var polygonContains = function(polygon, point) {
var lambda = point[0],
phi = point[1],
normal = [sin(lambda), -cos(lambda), 0],
angle = 0,
winding = 0;
sum.reset();
for (var i = 0, n = polygon.length; i < n; ++i) {
if (!(m = (ring = polygon[i]).length)) continue;
var ring,
m,
point0 = ring[m - 1],
lambda0 = point0[0],
phi0 = point0[1] / 2 + quarterPi,
sinPhi0 = sin(phi0),
cosPhi0 = cos(phi0);
for (var j = 0; j < m; ++j, lambda0 = lambda1, sinPhi0 = sinPhi1, cosPhi0 = cosPhi1, point0 = point1) {
var point1 = ring[j],
lambda1 = point1[0],
phi1 = point1[1] / 2 + quarterPi,
sinPhi1 = sin(phi1),
cosPhi1 = cos(phi1),
delta = lambda1 - lambda0,
sign$$1 = delta >= 0 ? 1 : -1,
absDelta = sign$$1 * delta,
antimeridian = absDelta > pi,
k = sinPhi0 * sinPhi1;
sum.add(atan2(k * sign$$1 * sin(absDelta), cosPhi0 * cosPhi1 + k * cos(absDelta)));
angle += antimeridian ? delta + sign$$1 * tau : delta;
// Are the longitudes either side of the points meridian (lambda),
// and are the latitudes smaller than the parallel (phi)?
if (antimeridian ^ lambda0 >= lambda ^ lambda1 >= lambda) {
var arc = cartesianCross(cartesian(point0), cartesian(point1));
cartesianNormalizeInPlace(arc);
var intersection = cartesianCross(normal, arc);
cartesianNormalizeInPlace(intersection);
var phiArc = (antimeridian ^ delta >= 0 ? -1 : 1) * asin(intersection[2]);
if (phi > phiArc || phi === phiArc && (arc[0] || arc[1])) {
winding += antimeridian ^ delta >= 0 ? 1 : -1;
}
}
}
}
// First, determine whether the South pole is inside or outside:
//
// It is inside if:
// * the polygon winds around it in a clockwise direction.
// * the polygon does not (cumulatively) wind around it, but has a negative
// (counter-clockwise) area.
//
// Second, count the (signed) number of times a segment crosses a lambda
// from the point to the South pole. If it is zero, then the point is the
// same side as the South pole.
return (angle < -epsilon || angle < epsilon && sum < -epsilon) ^ (winding & 1);
};
var clip = function(pointVisible, clipLine, interpolate, start) {
return function(sink) {
var line = clipLine(sink),
ringBuffer = clipBuffer(),
ringSink = clipLine(ringBuffer),
polygonStarted = false,
polygon,
segments,
ring;
var clip = {
point: point,
lineStart: lineStart,
lineEnd: lineEnd,
polygonStart: function() {
clip.point = pointRing;
clip.lineStart = ringStart;
clip.lineEnd = ringEnd;
segments = [];
polygon = [];
},
polygonEnd: function() {
clip.point = point;
clip.lineStart = lineStart;
clip.lineEnd = lineEnd;
segments = d3Array.merge(segments);
var startInside = polygonContains(polygon, start);
if (segments.length) {
if (!polygonStarted) sink.polygonStart(), polygonStarted = true;
clipRejoin(segments, compareIntersection, startInside, interpolate, sink);
} else if (startInside) {
if (!polygonStarted) sink.polygonStart(), polygonStarted = true;
sink.lineStart();
interpolate(null, null, 1, sink);
sink.lineEnd();
}
if (polygonStarted) sink.polygonEnd(), polygonStarted = false;
segments = polygon = null;
},
sphere: function() {
sink.polygonStart();
sink.lineStart();
interpolate(null, null, 1, sink);
sink.lineEnd();
sink.polygonEnd();
}
};
function point(lambda, phi) {
if (pointVisible(lambda, phi)) sink.point(lambda, phi);
}
function pointLine(lambda, phi) {
line.point(lambda, phi);
}
function lineStart() {
clip.point = pointLine;
line.lineStart();
}
function lineEnd() {
clip.point = point;
line.lineEnd();
}
function pointRing(lambda, phi) {
ring.push([lambda, phi]);
ringSink.point(lambda, phi);
}
function ringStart() {
ringSink.lineStart();
ring = [];
}
function ringEnd() {
pointRing(ring[0][0], ring[0][1]);
ringSink.lineEnd();
var clean = ringSink.clean(),
ringSegments = ringBuffer.result(),
i, n = ringSegments.length, m,
segment,
point;
ring.pop();
polygon.push(ring);
ring = null;
if (!n) return;
// No intersections.
if (clean & 1) {
segment = ringSegments[0];
if ((m = segment.length - 1) > 0) {
if (!polygonStarted) sink.polygonStart(), polygonStarted = true;
sink.lineStart();
for (i = 0; i < m; ++i) sink.point((point = segment[i])[0], point[1]);
sink.lineEnd();
}
return;
}
// Rejoin connected segments.
// TODO reuse ringBuffer.rejoin()?
if (n > 1 && clean & 2) ringSegments.push(ringSegments.pop().concat(ringSegments.shift()));
segments.push(ringSegments.filter(validSegment));
}
return clip;
};
};
function validSegment(segment) {
return segment.length > 1;
}
// Intersections are sorted along the clip edge. For both antimeridian cutting
// and circle clipping, the same comparison is used.
function compareIntersection(a, b) {
return ((a = a.x)[0] < 0 ? a[1] - halfPi - epsilon : halfPi - a[1])
- ((b = b.x)[0] < 0 ? b[1] - halfPi - epsilon : halfPi - b[1]);
}
var clipAntimeridian = clip(
function() { return true; },
clipAntimeridianLine,
clipAntimeridianInterpolate,
[-pi, -halfPi]
);
// Takes a line and cuts into visible segments. Return values: 0 - there were
// intersections or the line was empty; 1 - no intersections; 2 - there were
// intersections, and the first and last segments should be rejoined.
function clipAntimeridianLine(stream) {
var lambda0 = NaN,
phi0 = NaN,
sign0 = NaN,
clean; // no intersections
return {
lineStart: function() {
stream.lineStart();
clean = 1;
},
point: function(lambda1, phi1) {
var sign1 = lambda1 > 0 ? pi : -pi,
delta = abs(lambda1 - lambda0);
if (abs(delta - pi) < epsilon) { // line crosses a pole
stream.point(lambda0, phi0 = (phi0 + phi1) / 2 > 0 ? halfPi : -halfPi);
stream.point(sign0, phi0);
stream.lineEnd();
stream.lineStart();
stream.point(sign1, phi0);
stream.point(lambda1, phi0);
clean = 0;
} else if (sign0 !== sign1 && delta >= pi) { // line crosses antimeridian
if (abs(lambda0 - sign0) < epsilon) lambda0 -= sign0 * epsilon; // handle degeneracies
if (abs(lambda1 - sign1) < epsilon) lambda1 -= sign1 * epsilon;
phi0 = clipAntimeridianIntersect(lambda0, phi0, lambda1, phi1);
stream.point(sign0, phi0);
stream.lineEnd();
stream.lineStart();
stream.point(sign1, phi0);
clean = 0;
}
stream.point(lambda0 = lambda1, phi0 = phi1);
sign0 = sign1;
},
lineEnd: function() {
stream.lineEnd();
lambda0 = phi0 = NaN;
},
clean: function() {
return 2 - clean; // if intersections, rejoin first and last segments
}
};
}
function clipAntimeridianIntersect(lambda0, phi0, lambda1, phi1) {
var cosPhi0,
cosPhi1,
sinLambda0Lambda1 = sin(lambda0 - lambda1);
return abs(sinLambda0Lambda1) > epsilon
? atan((sin(phi0) * (cosPhi1 = cos(phi1)) * sin(lambda1)
- sin(phi1) * (cosPhi0 = cos(phi0)) * sin(lambda0))
/ (cosPhi0 * cosPhi1 * sinLambda0Lambda1))
: (phi0 + phi1) / 2;
}
function clipAntimeridianInterpolate(from, to, direction, stream) {
var phi;
if (from == null) {
phi = direction * halfPi;
stream.point(-pi, phi);
stream.point(0, phi);
stream.point(pi, phi);
stream.point(pi, 0);
stream.point(pi, -phi);
stream.point(0, -phi);
stream.point(-pi, -phi);
stream.point(-pi, 0);
stream.point(-pi, phi);
} else if (abs(from[0] - to[0]) > epsilon) {
var lambda = from[0] < to[0] ? pi : -pi;
phi = direction * lambda / 2;
stream.point(-lambda, phi);
stream.point(0, phi);
stream.point(lambda, phi);
} else {
stream.point(to[0], to[1]);
}
}
var clipCircle = function(radius) {
var cr = cos(radius),
delta = 6 * radians,
smallRadius = cr > 0,
notHemisphere = abs(cr) > epsilon; // TODO optimise for this common case
function interpolate(from, to, direction, stream) {
circleStream(stream, radius, delta, direction, from, to);
}
function visible(lambda, phi) {
return cos(lambda) * cos(phi) > cr;
}
// Takes a line and cuts into visible segments. Return values used for polygon
// clipping: 0 - there were intersections or the line was empty; 1 - no
// intersections 2 - there were intersections, and the first and last segments
// should be rejoined.
function clipLine(stream) {
var point0, // previous point
c0, // code for previous point
v0, // visibility of previous point
v00, // visibility of first point
clean; // no intersections
return {
lineStart: function() {
v00 = v0 = false;
clean = 1;
},
point: function(lambda, phi) {
var point1 = [lambda, phi],
point2,
v = visible(lambda, phi),
c = smallRadius
? v ? 0 : code(lambda, phi)
: v ? code(lambda + (lambda < 0 ? pi : -pi), phi) : 0;
if (!point0 && (v00 = v0 = v)) stream.lineStart();
// Handle degeneracies.
// TODO ignore if not clipping polygons.
if (v !== v0) {
point2 = intersect(point0, point1);
if (!point2 || pointEqual(point0, point2) || pointEqual(point1, point2)) {
point1[0] += epsilon;
point1[1] += epsilon;
v = visible(point1[0], point1[1]);
}
}
if (v !== v0) {
clean = 0;
if (v) {
// outside going in
stream.lineStart();
point2 = intersect(point1, point0);
stream.point(point2[0], point2[1]);
} else {
// inside going out
point2 = intersect(point0, point1);
stream.point(point2[0], point2[1]);
stream.lineEnd();
}
point0 = point2;
} else if (notHemisphere && point0 && smallRadius ^ v) {
var t;
// If the codes for two points are different, or are both zero,
// and there this segment intersects with the small circle.
if (!(c & c0) && (t = intersect(point1, point0, true))) {
clean = 0;
if (smallRadius) {
stream.lineStart();
stream.point(t[0][0], t[0][1]);
stream.point(t[1][0], t[1][1]);
stream.lineEnd();
} else {
stream.point(t[1][0], t[1][1]);
stream.lineEnd();
stream.lineStart();
stream.point(t[0][0], t[0][1]);
}
}
}
if (v && (!point0 || !pointEqual(point0, point1))) {
stream.point(point1[0], point1[1]);
}
point0 = point1, v0 = v, c0 = c;
},
lineEnd: function() {
if (v0) stream.lineEnd();
point0 = null;
},
// Rejoin first and last segments if there were intersections and the first
// and last points were visible.
clean: function() {
return clean | ((v00 && v0) << 1);
}
};
}
// Intersects the great circle between a and b with the clip circle.
function intersect(a, b, two) {
var pa = cartesian(a),
pb = cartesian(b);
// We have two planes, n1.p = d1 and n2.p = d2.
// Find intersection line p(t) = c1 n1 + c2 n2 + t (n1 n2).
var n1 = [1, 0, 0], // normal
n2 = cartesianCross(pa, pb),
n2n2 = cartesianDot(n2, n2),
n1n2 = n2[0], // cartesianDot(n1, n2),
determinant = n2n2 - n1n2 * n1n2;
// Two polar points.
if (!determinant) return !two && a;
var c1 = cr * n2n2 / determinant,
c2 = -cr * n1n2 / determinant,
n1xn2 = cartesianCross(n1, n2),
A = cartesianScale(n1, c1),
B = cartesianScale(n2, c2);
cartesianAddInPlace(A, B);
// Solve |p(t)|^2 = 1.
var u = n1xn2,
w = cartesianDot(A, u),
uu = cartesianDot(u, u),
t2 = w * w - uu * (cartesianDot(A, A) - 1);
if (t2 < 0) return;
var t = sqrt(t2),
q = cartesianScale(u, (-w - t) / uu);
cartesianAddInPlace(q, A);
q = spherical(q);
if (!two) return q;
// Two intersection points.
var lambda0 = a[0],
lambda1 = b[0],
phi0 = a[1],
phi1 = b[1],
z;
if (lambda1 < lambda0) z = lambda0, lambda0 = lambda1, lambda1 = z;
var delta = lambda1 - lambda0,
polar = abs(delta - pi) < epsilon,
meridian = polar || delta < epsilon;
if (!polar && phi1 < phi0) z = phi0, phi0 = phi1, phi1 = z;
// Check that the first point is between a and b.
if (meridian
? polar
? phi0 + phi1 > 0 ^ q[1] < (abs(q[0] - lambda0) < epsilon ? phi0 : phi1)
: phi0 <= q[1] && q[1] <= phi1
: delta > pi ^ (lambda0 <= q[0] && q[0] <= lambda1)) {
var q1 = cartesianScale(u, (-w + t) / uu);
cartesianAddInPlace(q1, A);
return [q, spherical(q1)];
}
}
// Generates a 4-bit vector representing the location of a point relative to
// the small circle's bounding box.
function code(lambda, phi) {
var r = smallRadius ? radius : pi - radius,
code = 0;
if (lambda < -r) code |= 1; // left
else if (lambda > r) code |= 2; // right
if (phi < -r) code |= 4; // below
else if (phi > r) code |= 8; // above
return code;
}
return clip(visible, clipLine, interpolate, smallRadius ? [0, -radius] : [-pi, radius - pi]);
};
var clipLine = function(a, b, x0, y0, x1, y1) {
var ax = a[0],
ay = a[1],
bx = b[0],
by = b[1],
t0 = 0,
t1 = 1,
dx = bx - ax,
dy = by - ay,
r;
r = x0 - ax;
if (!dx && r > 0) return;
r /= dx;
if (dx < 0) {
if (r < t0) return;
if (r < t1) t1 = r;
} else if (dx > 0) {
if (r > t1) return;
if (r > t0) t0 = r;
}
r = x1 - ax;
if (!dx && r < 0) return;
r /= dx;
if (dx < 0) {
if (r > t1) return;
if (r > t0) t0 = r;
} else if (dx > 0) {
if (r < t0) return;
if (r < t1) t1 = r;
}
r = y0 - ay;
if (!dy && r > 0) return;
r /= dy;
if (dy < 0) {
if (r < t0) return;
if (r < t1) t1 = r;
} else if (dy > 0) {
if (r > t1) return;
if (r > t0) t0 = r;
}
r = y1 - ay;
if (!dy && r < 0) return;
r /= dy;
if (dy < 0) {
if (r > t1) return;
if (r > t0) t0 = r;
} else if (dy > 0) {
if (r < t0) return;
if (r < t1) t1 = r;
}
if (t0 > 0) a[0] = ax + t0 * dx, a[1] = ay + t0 * dy;
if (t1 < 1) b[0] = ax + t1 * dx, b[1] = ay + t1 * dy;
return true;
};
var clipMax = 1e9;
var clipMin = -clipMax;
// TODO Use d3-polygons polygonContains here for the ring check?
// TODO Eliminate duplicate buffering in clipBuffer and polygon.push?
function clipRectangle(x0, y0, x1, y1) {
function visible(x, y) {
return x0 <= x && x <= x1 && y0 <= y && y <= y1;
}
function interpolate(from, to, direction, stream) {
var a = 0, a1 = 0;
if (from == null
|| (a = corner(from, direction)) !== (a1 = corner(to, direction))
|| comparePoint(from, to) < 0 ^ direction > 0) {
do stream.point(a === 0 || a === 3 ? x0 : x1, a > 1 ? y1 : y0);
while ((a = (a + direction + 4) % 4) !== a1);
} else {
stream.point(to[0], to[1]);
}
}
function corner(p, direction) {
return abs(p[0] - x0) < epsilon ? direction > 0 ? 0 : 3
: abs(p[0] - x1) < epsilon ? direction > 0 ? 2 : 1
: abs(p[1] - y0) < epsilon ? direction > 0 ? 1 : 0
: direction > 0 ? 3 : 2; // abs(p[1] - y1) < epsilon
}
function compareIntersection(a, b) {
return comparePoint(a.x, b.x);
}
function comparePoint(a, b) {
var ca = corner(a, 1),
cb = corner(b, 1);
return ca !== cb ? ca - cb
: ca === 0 ? b[1] - a[1]
: ca === 1 ? a[0] - b[0]
: ca === 2 ? a[1] - b[1]
: b[0] - a[0];
}
return function(stream) {
var activeStream = stream,
bufferStream = clipBuffer(),
segments,
polygon,
ring,
x__, y__, v__, // first point
x_, y_, v_, // previous point
first,
clean;
var clipStream = {
point: point,
lineStart: lineStart,
lineEnd: lineEnd,
polygonStart: polygonStart,
polygonEnd: polygonEnd
};
function point(x, y) {
if (visible(x, y)) activeStream.point(x, y);
}
function polygonInside() {
var winding = 0;
for (var i = 0, n = polygon.length; i < n; ++i) {
for (var ring = polygon[i], j = 1, m = ring.length, point = ring[0], a0, a1, b0 = point[0], b1 = point[1]; j < m; ++j) {
a0 = b0, a1 = b1, point = ring[j], b0 = point[0], b1 = point[1];
if (a1 <= y1) { if (b1 > y1 && (b0 - a0) * (y1 - a1) > (b1 - a1) * (x0 - a0)) ++winding; }
else { if (b1 <= y1 && (b0 - a0) * (y1 - a1) < (b1 - a1) * (x0 - a0)) --winding; }
}
}
return winding;
}
// Buffer geometry within a polygon and then clip it en masse.
function polygonStart() {
activeStream = bufferStream, segments = [], polygon = [], clean = true;
}
function polygonEnd() {
var startInside = polygonInside(),
cleanInside = clean && startInside,
visible = (segments = d3Array.merge(segments)).length;
if (cleanInside || visible) {
stream.polygonStart();
if (cleanInside) {
stream.lineStart();
interpolate(null, null, 1, stream);
stream.lineEnd();
}
if (visible) {
clipRejoin(segments, compareIntersection, startInside, interpolate, stream);
}
stream.polygonEnd();
}
activeStream = stream, segments = polygon = ring = null;
}
function lineStart() {
clipStream.point = linePoint;
if (polygon) polygon.push(ring = []);
first = true;
v_ = false;
x_ = y_ = NaN;
}
// TODO rather than special-case polygons, simply handle them separately.
// Ideally, coincident intersection points should be jittered to avoid
// clipping issues.
function lineEnd() {
if (segments) {
linePoint(x__, y__);
if (v__ && v_) bufferStream.rejoin();
segments.push(bufferStream.result());
}
clipStream.point = point;
if (v_) activeStream.lineEnd();
}
function linePoint(x, y) {
var v = visible(x, y);
if (polygon) ring.push([x, y]);
if (first) {
x__ = x, y__ = y, v__ = v;
first = false;
if (v) {
activeStream.lineStart();
activeStream.point(x, y);
}
} else {
if (v && v_) activeStream.point(x, y);
else {
var a = [x_ = Math.max(clipMin, Math.min(clipMax, x_)), y_ = Math.max(clipMin, Math.min(clipMax, y_))],
b = [x = Math.max(clipMin, Math.min(clipMax, x)), y = Math.max(clipMin, Math.min(clipMax, y))];
if (clipLine(a, b, x0, y0, x1, y1)) {
if (!v_) {
activeStream.lineStart();
activeStream.point(a[0], a[1]);
}
activeStream.point(b[0], b[1]);
if (!v) activeStream.lineEnd();
clean = false;
} else if (v) {
activeStream.lineStart();
activeStream.point(x, y);
clean = false;
}
}
}
x_ = x, y_ = y, v_ = v;
}
return clipStream;
};
}
var extent = function() {
var x0 = 0,
y0 = 0,
x1 = 960,
y1 = 500,
cache,
cacheStream,
clip;
return clip = {
stream: function(stream) {
return cache && cacheStream === stream ? cache : cache = clipRectangle(x0, y0, x1, y1)(cacheStream = stream);
},
extent: function(_) {
return arguments.length ? (x0 = +_[0][0], y0 = +_[0][1], x1 = +_[1][0], y1 = +_[1][1], cache = cacheStream = null, clip) : [[x0, y0], [x1, y1]];
}
};
};
var lengthSum = adder();
var lambda0$2;
var sinPhi0$1;
var cosPhi0$1;
var lengthStream = {
sphere: noop,
point: noop,
lineStart: lengthLineStart,
lineEnd: noop,
polygonStart: noop,
polygonEnd: noop
};
function lengthLineStart() {
lengthStream.point = lengthPointFirst;
lengthStream.lineEnd = lengthLineEnd;
}
function lengthLineEnd() {
lengthStream.point = lengthStream.lineEnd = noop;
}
function lengthPointFirst(lambda, phi) {
lambda *= radians, phi *= radians;
lambda0$2 = lambda, sinPhi0$1 = sin(phi), cosPhi0$1 = cos(phi);
lengthStream.point = lengthPoint;
}
function lengthPoint(lambda, phi) {
lambda *= radians, phi *= radians;
var sinPhi = sin(phi),
cosPhi = cos(phi),
delta = abs(lambda - lambda0$2),
cosDelta = cos(delta),
sinDelta = sin(delta),
x = cosPhi * sinDelta,
y = cosPhi0$1 * sinPhi - sinPhi0$1 * cosPhi * cosDelta,
z = sinPhi0$1 * sinPhi + cosPhi0$1 * cosPhi * cosDelta;
lengthSum.add(atan2(sqrt(x * x + y * y), z));
lambda0$2 = lambda, sinPhi0$1 = sinPhi, cosPhi0$1 = cosPhi;
}
var length = function(object) {
lengthSum.reset();
geoStream(object, lengthStream);
return +lengthSum;
};
var coordinates = [null, null];
var object = {type: "LineString", coordinates: coordinates};
var distance = function(a, b) {
coordinates[0] = a;
coordinates[1] = b;
return length(object);
};
var containsObjectType = {
Feature: function(object, point) {
return containsGeometry(object.geometry, point);
},
FeatureCollection: function(object, point) {
var features = object.features, i = -1, n = features.length;
while (++i < n) if (containsGeometry(features[i].geometry, point)) return true;
return false;
}
};
var containsGeometryType = {
Sphere: function() {
return true;
},
Point: function(object, point) {
return containsPoint(object.coordinates, point);
},
MultiPoint: function(object, point) {
var coordinates = object.coordinates, i = -1, n = coordinates.length;
while (++i < n) if (containsPoint(coordinates[i], point)) return true;
return false;
},
LineString: function(object, point) {
return containsLine(object.coordinates, point);
},
MultiLineString: function(object, point) {
var coordinates = object.coordinates, i = -1, n = coordinates.length;
while (++i < n) if (containsLine(coordinates[i], point)) return true;
return false;
},
Polygon: function(object, point) {
return containsPolygon(object.coordinates, point);
},
MultiPolygon: function(object, point) {
var coordinates = object.coordinates, i = -1, n = coordinates.length;
while (++i < n) if (containsPolygon(coordinates[i], point)) return true;
return false;
},
GeometryCollection: function(object, point) {
var geometries = object.geometries, i = -1, n = geometries.length;
while (++i < n) if (containsGeometry(geometries[i], point)) return true;
return false;
}
};
function containsGeometry(geometry, point) {
return geometry && containsGeometryType.hasOwnProperty(geometry.type)
? containsGeometryType[geometry.type](geometry, point)
: false;
}
function containsPoint(coordinates, point) {
return distance(coordinates, point) === 0;
}
function containsLine(coordinates, point) {
var ab = distance(coordinates[0], coordinates[1]),
ao = distance(coordinates[0], point),
ob = distance(point, coordinates[1]);
return ao + ob <= ab + epsilon;
}
function containsPolygon(coordinates, point) {
return !!polygonContains(coordinates.map(ringRadians), pointRadians(point));
}
function ringRadians(ring) {
return ring = ring.map(pointRadians), ring.pop(), ring;
}
function pointRadians(point) {
return [point[0] * radians, point[1] * radians];
}
var contains = function(object, point) {
return (object && containsObjectType.hasOwnProperty(object.type)
? containsObjectType[object.type]
: containsGeometry)(object, point);
};
function graticuleX(y0, y1, dy) {
var y = d3Array.range(y0, y1 - epsilon, dy).concat(y1);
return function(x) { return y.map(function(y) { return [x, y]; }); };
}
function graticuleY(x0, x1, dx) {
var x = d3Array.range(x0, x1 - epsilon, dx).concat(x1);
return function(y) { return x.map(function(x) { return [x, y]; }); };
}
function graticule() {
var x1, x0, X1, X0,
y1, y0, Y1, Y0,
dx = 10, dy = dx, DX = 90, DY = 360,
x, y, X, Y,
precision = 2.5;
function graticule() {
return {type: "MultiLineString", coordinates: lines()};
}
function lines() {
return d3Array.range(ceil(X0 / DX) * DX, X1, DX).map(X)
.concat(d3Array.range(ceil(Y0 / DY) * DY, Y1, DY).map(Y))
.concat(d3Array.range(ceil(x0 / dx) * dx, x1, dx).filter(function(x) { return abs(x % DX) > epsilon; }).map(x))
.concat(d3Array.range(ceil(y0 / dy) * dy, y1, dy).filter(function(y) { return abs(y % DY) > epsilon; }).map(y));
}
graticule.lines = function() {
return lines().map(function(coordinates) { return {type: "LineString", coordinates: coordinates}; });
};
graticule.outline = function() {
return {
type: "Polygon",
coordinates: [
X(X0).concat(
Y(Y1).slice(1),
X(X1).reverse().slice(1),
Y(Y0).reverse().slice(1))
]
};
};
graticule.extent = function(_) {
if (!arguments.length) return graticule.extentMinor();
return graticule.extentMajor(_).extentMinor(_);
};
graticule.extentMajor = function(_) {
if (!arguments.length) return [[X0, Y0], [X1, Y1]];
X0 = +_[0][0], X1 = +_[1][0];
Y0 = +_[0][1], Y1 = +_[1][1];
if (X0 > X1) _ = X0, X0 = X1, X1 = _;
if (Y0 > Y1) _ = Y0, Y0 = Y1, Y1 = _;
return graticule.precision(precision);
};
graticule.extentMinor = function(_) {
if (!arguments.length) return [[x0, y0], [x1, y1]];
x0 = +_[0][0], x1 = +_[1][0];
y0 = +_[0][1], y1 = +_[1][1];
if (x0 > x1) _ = x0, x0 = x1, x1 = _;
if (y0 > y1) _ = y0, y0 = y1, y1 = _;
return graticule.precision(precision);
};
graticule.step = function(_) {
if (!arguments.length) return graticule.stepMinor();
return graticule.stepMajor(_).stepMinor(_);
};
graticule.stepMajor = function(_) {
if (!arguments.length) return [DX, DY];
DX = +_[0], DY = +_[1];
return graticule;
};
graticule.stepMinor = function(_) {
if (!arguments.length) return [dx, dy];
dx = +_[0], dy = +_[1];
return graticule;
};
graticule.precision = function(_) {
if (!arguments.length) return precision;
precision = +_;
x = graticuleX(y0, y1, 90);
y = graticuleY(x0, x1, precision);
X = graticuleX(Y0, Y1, 90);
Y = graticuleY(X0, X1, precision);
return graticule;
};
return graticule
.extentMajor([[-180, -90 + epsilon], [180, 90 - epsilon]])
.extentMinor([[-180, -80 - epsilon], [180, 80 + epsilon]]);
}
function graticule10() {
return graticule()();
}
var interpolate = function(a, b) {
var x0 = a[0] * radians,
y0 = a[1] * radians,
x1 = b[0] * radians,
y1 = b[1] * radians,
cy0 = cos(y0),
sy0 = sin(y0),
cy1 = cos(y1),
sy1 = sin(y1),
kx0 = cy0 * cos(x0),
ky0 = cy0 * sin(x0),
kx1 = cy1 * cos(x1),
ky1 = cy1 * sin(x1),
d = 2 * asin(sqrt(haversin(y1 - y0) + cy0 * cy1 * haversin(x1 - x0))),
k = sin(d);
var interpolate = d ? function(t) {
var B = sin(t *= d) / k,
A = sin(d - t) / k,
x = A * kx0 + B * kx1,
y = A * ky0 + B * ky1,
z = A * sy0 + B * sy1;
return [
atan2(y, x) * degrees,
atan2(z, sqrt(x * x + y * y)) * degrees
];
} : function() {
return [x0 * degrees, y0 * degrees];
};
interpolate.distance = d;
return interpolate;
};
var identity = function(x) {
return x;
};
var areaSum$1 = adder();
var areaRingSum$1 = adder();
var x00;
var y00;
var x0$1;
var y0$1;
var areaStream$1 = {
point: noop,
lineStart: noop,
lineEnd: noop,
polygonStart: function() {
areaStream$1.lineStart = areaRingStart$1;
areaStream$1.lineEnd = areaRingEnd$1;
},
polygonEnd: function() {
areaStream$1.lineStart = areaStream$1.lineEnd = areaStream$1.point = noop;
areaSum$1.add(abs(areaRingSum$1));
areaRingSum$1.reset();
},
result: function() {
var area = areaSum$1 / 2;
areaSum$1.reset();
return area;
}
};
function areaRingStart$1() {
areaStream$1.point = areaPointFirst$1;
}
function areaPointFirst$1(x, y) {
areaStream$1.point = areaPoint$1;
x00 = x0$1 = x, y00 = y0$1 = y;
}
function areaPoint$1(x, y) {
areaRingSum$1.add(y0$1 * x - x0$1 * y);
x0$1 = x, y0$1 = y;
}
function areaRingEnd$1() {
areaPoint$1(x00, y00);
}
var x0$2 = Infinity;
var y0$2 = x0$2;
var x1 = -x0$2;
var y1 = x1;
var boundsStream$1 = {
point: boundsPoint$1,
lineStart: noop,
lineEnd: noop,
polygonStart: noop,
polygonEnd: noop,
result: function() {
var bounds = [[x0$2, y0$2], [x1, y1]];
x1 = y1 = -(y0$2 = x0$2 = Infinity);
return bounds;
}
};
function boundsPoint$1(x, y) {
if (x < x0$2) x0$2 = x;
if (x > x1) x1 = x;
if (y < y0$2) y0$2 = y;
if (y > y1) y1 = y;
}
// TODO Enforce positive area for exterior, negative area for interior?
var X0$1 = 0;
var Y0$1 = 0;
var Z0$1 = 0;
var X1$1 = 0;
var Y1$1 = 0;
var Z1$1 = 0;
var X2$1 = 0;
var Y2$1 = 0;
var Z2$1 = 0;
var x00$1;
var y00$1;
var x0$3;
var y0$3;
var centroidStream$1 = {
point: centroidPoint$1,
lineStart: centroidLineStart$1,
lineEnd: centroidLineEnd$1,
polygonStart: function() {
centroidStream$1.lineStart = centroidRingStart$1;
centroidStream$1.lineEnd = centroidRingEnd$1;
},
polygonEnd: function() {
centroidStream$1.point = centroidPoint$1;
centroidStream$1.lineStart = centroidLineStart$1;
centroidStream$1.lineEnd = centroidLineEnd$1;
},
result: function() {
var centroid = Z2$1 ? [X2$1 / Z2$1, Y2$1 / Z2$1]
: Z1$1 ? [X1$1 / Z1$1, Y1$1 / Z1$1]
: Z0$1 ? [X0$1 / Z0$1, Y0$1 / Z0$1]
: [NaN, NaN];
X0$1 = Y0$1 = Z0$1 =
X1$1 = Y1$1 = Z1$1 =
X2$1 = Y2$1 = Z2$1 = 0;
return centroid;
}
};
function centroidPoint$1(x, y) {
X0$1 += x;
Y0$1 += y;
++Z0$1;
}
function centroidLineStart$1() {
centroidStream$1.point = centroidPointFirstLine;
}
function centroidPointFirstLine(x, y) {
centroidStream$1.point = centroidPointLine;
centroidPoint$1(x0$3 = x, y0$3 = y);
}
function centroidPointLine(x, y) {
var dx = x - x0$3, dy = y - y0$3, z = sqrt(dx * dx + dy * dy);
X1$1 += z * (x0$3 + x) / 2;
Y1$1 += z * (y0$3 + y) / 2;
Z1$1 += z;
centroidPoint$1(x0$3 = x, y0$3 = y);
}
function centroidLineEnd$1() {
centroidStream$1.point = centroidPoint$1;
}
function centroidRingStart$1() {
centroidStream$1.point = centroidPointFirstRing;
}
function centroidRingEnd$1() {
centroidPointRing(x00$1, y00$1);
}
function centroidPointFirstRing(x, y) {
centroidStream$1.point = centroidPointRing;
centroidPoint$1(x00$1 = x0$3 = x, y00$1 = y0$3 = y);
}
function centroidPointRing(x, y) {
var dx = x - x0$3,
dy = y - y0$3,
z = sqrt(dx * dx + dy * dy);
X1$1 += z * (x0$3 + x) / 2;
Y1$1 += z * (y0$3 + y) / 2;
Z1$1 += z;
z = y0$3 * x - x0$3 * y;
X2$1 += z * (x0$3 + x);
Y2$1 += z * (y0$3 + y);
Z2$1 += z * 3;
centroidPoint$1(x0$3 = x, y0$3 = y);
}
function PathContext(context) {
this._context = context;
}
PathContext.prototype = {
_radius: 4.5,
pointRadius: function(_) {
return this._radius = _, this;
},
polygonStart: function() {
this._line = 0;
},
polygonEnd: function() {
this._line = NaN;
},
lineStart: function() {
this._point = 0;
},
lineEnd: function() {
if (this._line === 0) this._context.closePath();
this._point = NaN;
},
point: function(x, y) {
switch (this._point) {
case 0: {
this._context.moveTo(x, y);
this._point = 1;
break;
}
case 1: {
this._context.lineTo(x, y);
break;
}
default: {
this._context.moveTo(x + this._radius, y);
this._context.arc(x, y, this._radius, 0, tau);
break;
}
}
},
result: noop
};
var lengthSum$1 = adder();
var lengthRing;
var x00$2;
var y00$2;
var x0$4;
var y0$4;
var lengthStream$1 = {
point: noop,
lineStart: function() {
lengthStream$1.point = lengthPointFirst$1;
},
lineEnd: function() {
if (lengthRing) lengthPoint$1(x00$2, y00$2);
lengthStream$1.point = noop;
},
polygonStart: function() {
lengthRing = true;
},
polygonEnd: function() {
lengthRing = null;
},
result: function() {
var length = +lengthSum$1;
lengthSum$1.reset();
return length;
}
};
function lengthPointFirst$1(x, y) {
lengthStream$1.point = lengthPoint$1;
x00$2 = x0$4 = x, y00$2 = y0$4 = y;
}
function lengthPoint$1(x, y) {
x0$4 -= x, y0$4 -= y;
lengthSum$1.add(sqrt(x0$4 * x0$4 + y0$4 * y0$4));
x0$4 = x, y0$4 = y;
}
function PathString() {
this._string = [];
}
PathString.prototype = {
_radius: 4.5,
_circle: circle$1(4.5),
pointRadius: function(_) {
if ((_ = +_) !== this._radius) this._radius = _, this._circle = null;
return this;
},
polygonStart: function() {
this._line = 0;
},
polygonEnd: function() {
this._line = NaN;
},
lineStart: function() {
this._point = 0;
},
lineEnd: function() {
if (this._line === 0) this._string.push("Z");
this._point = NaN;
},
point: function(x, y) {
switch (this._point) {
case 0: {
this._string.push("M", x, ",", y);
this._point = 1;
break;
}
case 1: {
this._string.push("L", x, ",", y);
break;
}
default: {
if (this._circle == null) this._circle = circle$1(this._radius);
this._string.push("M", x, ",", y, this._circle);
break;
}
}
},
result: function() {
if (this._string.length) {
var result = this._string.join("");
this._string = [];
return result;
} else {
return null;
}
}
};
function circle$1(radius) {
return "m0," + radius
+ "a" + radius + "," + radius + " 0 1,1 0," + -2 * radius
+ "a" + radius + "," + radius + " 0 1,1 0," + 2 * radius
+ "z";
}
var index = function(projection, context) {
var pointRadius = 4.5,
projectionStream,
contextStream;
function path(object) {
if (object) {
if (typeof pointRadius === "function") contextStream.pointRadius(+pointRadius.apply(this, arguments));
geoStream(object, projectionStream(contextStream));
}
return contextStream.result();
}
path.area = function(object) {
geoStream(object, projectionStream(areaStream$1));
return areaStream$1.result();
};
path.measure = function(object) {
geoStream(object, projectionStream(lengthStream$1));
return lengthStream$1.result();
};
path.bounds = function(object) {
geoStream(object, projectionStream(boundsStream$1));
return boundsStream$1.result();
};
path.centroid = function(object) {
geoStream(object, projectionStream(centroidStream$1));
return centroidStream$1.result();
};
path.projection = function(_) {
return arguments.length ? (projectionStream = _ == null ? (projection = null, identity) : (projection = _).stream, path) : projection;
};
path.context = function(_) {
if (!arguments.length) return context;
contextStream = _ == null ? (context = null, new PathString) : new PathContext(context = _);
if (typeof pointRadius !== "function") contextStream.pointRadius(pointRadius);
return path;
};
path.pointRadius = function(_) {
if (!arguments.length) return pointRadius;
pointRadius = typeof _ === "function" ? _ : (contextStream.pointRadius(+_), +_);
return path;
};
return path.projection(projection).context(context);
};
var transform = function(methods) {
return {
stream: transformer(methods)
};
};
function transformer(methods) {
return function(stream) {
var s = new TransformStream;
for (var key in methods) s[key] = methods[key];
s.stream = stream;
return s;
};
}
function TransformStream() {}
TransformStream.prototype = {
constructor: TransformStream,
point: function(x, y) { this.stream.point(x, y); },
sphere: function() { this.stream.sphere(); },
lineStart: function() { this.stream.lineStart(); },
lineEnd: function() { this.stream.lineEnd(); },
polygonStart: function() { this.stream.polygonStart(); },
polygonEnd: function() { this.stream.polygonEnd(); }
};
function fit(projection, fitBounds, object) {
var clip = projection.clipExtent && projection.clipExtent();
projection.scale(150).translate([0, 0]);
if (clip != null) projection.clipExtent(null);
geoStream(object, projection.stream(boundsStream$1));
fitBounds(boundsStream$1.result());
if (clip != null) projection.clipExtent(clip);
return projection;
}
function fitExtent(projection, extent, object) {
return fit(projection, function(b) {
var w = extent[1][0] - extent[0][0],
h = extent[1][1] - extent[0][1],
k = Math.min(w / (b[1][0] - b[0][0]), h / (b[1][1] - b[0][1])),
x = +extent[0][0] + (w - k * (b[1][0] + b[0][0])) / 2,
y = +extent[0][1] + (h - k * (b[1][1] + b[0][1])) / 2;
projection.scale(150 * k).translate([x, y]);
}, object);
}
function fitSize(projection, size, object) {
return fitExtent(projection, [[0, 0], size], object);
}
function fitWidth(projection, width, object) {
return fit(projection, function(b) {
var w = +width,
k = w / (b[1][0] - b[0][0]),
x = (w - k * (b[1][0] + b[0][0])) / 2,
y = -k * b[0][1];
projection.scale(150 * k).translate([x, y]);
}, object);
}
function fitHeight(projection, height, object) {
return fit(projection, function(b) {
var h = +height,
k = h / (b[1][1] - b[0][1]),
x = -k * b[0][0],
y = (h - k * (b[1][1] + b[0][1])) / 2;
projection.scale(150 * k).translate([x, y]);
}, object);
}
var maxDepth = 16;
var cosMinDistance = cos(30 * radians); // cos(minimum angular distance)
var resample = function(project, delta2) {
return +delta2 ? resample$1(project, delta2) : resampleNone(project);
};
function resampleNone(project) {
return transformer({
point: function(x, y) {
x = project(x, y);
this.stream.point(x[0], x[1]);
}
});
}
function resample$1(project, delta2) {
function resampleLineTo(x0, y0, lambda0, a0, b0, c0, x1, y1, lambda1, a1, b1, c1, depth, stream) {
var dx = x1 - x0,
dy = y1 - y0,
d2 = dx * dx + dy * dy;
if (d2 > 4 * delta2 && depth--) {
var a = a0 + a1,
b = b0 + b1,
c = c0 + c1,
m = sqrt(a * a + b * b + c * c),
phi2 = asin(c /= m),
lambda2 = abs(abs(c) - 1) < epsilon || abs(lambda0 - lambda1) < epsilon ? (lambda0 + lambda1) / 2 : atan2(b, a),
p = project(lambda2, phi2),
x2 = p[0],
y2 = p[1],
dx2 = x2 - x0,
dy2 = y2 - y0,
dz = dy * dx2 - dx * dy2;
if (dz * dz / d2 > delta2 // perpendicular projected distance
|| abs((dx * dx2 + dy * dy2) / d2 - 0.5) > 0.3 // midpoint close to an end
|| a0 * a1 + b0 * b1 + c0 * c1 < cosMinDistance) { // angular distance
resampleLineTo(x0, y0, lambda0, a0, b0, c0, x2, y2, lambda2, a /= m, b /= m, c, depth, stream);
stream.point(x2, y2);
resampleLineTo(x2, y2, lambda2, a, b, c, x1, y1, lambda1, a1, b1, c1, depth, stream);
}
}
}
return function(stream) {
var lambda00, x00, y00, a00, b00, c00, // first point
lambda0, x0, y0, a0, b0, c0; // previous point
var resampleStream = {
point: point,
lineStart: lineStart,
lineEnd: lineEnd,
polygonStart: function() { stream.polygonStart(); resampleStream.lineStart = ringStart; },
polygonEnd: function() { stream.polygonEnd(); resampleStream.lineStart = lineStart; }
};
function point(x, y) {
x = project(x, y);
stream.point(x[0], x[1]);
}
function lineStart() {
x0 = NaN;
resampleStream.point = linePoint;
stream.lineStart();
}
function linePoint(lambda, phi) {
var c = cartesian([lambda, phi]), p = project(lambda, phi);
resampleLineTo(x0, y0, lambda0, a0, b0, c0, x0 = p[0], y0 = p[1], lambda0 = lambda, a0 = c[0], b0 = c[1], c0 = c[2], maxDepth, stream);
stream.point(x0, y0);
}
function lineEnd() {
resampleStream.point = point;
stream.lineEnd();
}
function ringStart() {
lineStart();
resampleStream.point = ringPoint;
resampleStream.lineEnd = ringEnd;
}
function ringPoint(lambda, phi) {
linePoint(lambda00 = lambda, phi), x00 = x0, y00 = y0, a00 = a0, b00 = b0, c00 = c0;
resampleStream.point = linePoint;
}
function ringEnd() {
resampleLineTo(x0, y0, lambda0, a0, b0, c0, x00, y00, lambda00, a00, b00, c00, maxDepth, stream);
resampleStream.lineEnd = lineEnd;
lineEnd();
}
return resampleStream;
};
}
var transformRadians = transformer({
point: function(x, y) {
this.stream.point(x * radians, y * radians);
}
});
function transformRotate(rotate) {
return transformer({
point: function(x, y) {
var r = rotate(x, y);
return this.stream.point(r[0], r[1]);
}
});
}
function projection(project) {
return projectionMutator(function() { return project; })();
}
function projectionMutator(projectAt) {
var project,
k = 150, // scale
x = 480, y = 250, // translate
dx, dy, lambda = 0, phi = 0, // center
deltaLambda = 0, deltaPhi = 0, deltaGamma = 0, rotate, projectRotate, // rotate
theta = null, preclip = clipAntimeridian, // clip angle
x0 = null, y0, x1, y1, postclip = identity, // clip extent
delta2 = 0.5, projectResample = resample(projectTransform, delta2), // precision
cache,
cacheStream;
function projection(point) {
point = projectRotate(point[0] * radians, point[1] * radians);
return [point[0] * k + dx, dy - point[1] * k];
}
function invert(point) {
point = projectRotate.invert((point[0] - dx) / k, (dy - point[1]) / k);
return point && [point[0] * degrees, point[1] * degrees];
}
function projectTransform(x, y) {
return x = project(x, y), [x[0] * k + dx, dy - x[1] * k];
}
projection.stream = function(stream) {
return cache && cacheStream === stream ? cache : cache = transformRadians(transformRotate(rotate)(preclip(projectResample(postclip(cacheStream = stream)))));
};
projection.preclip = function(_) {
return arguments.length ? (preclip = _, theta = undefined, reset()) : preclip;
};
projection.postclip = function(_) {
return arguments.length ? (postclip = _, x0 = y0 = x1 = y1 = null, reset()) : postclip;
};
projection.clipAngle = function(_) {
return arguments.length ? (preclip = +_ ? clipCircle(theta = _ * radians) : (theta = null, clipAntimeridian), reset()) : theta * degrees;
};
projection.clipExtent = function(_) {
return arguments.length ? (postclip = _ == null ? (x0 = y0 = x1 = y1 = null, identity) : clipRectangle(x0 = +_[0][0], y0 = +_[0][1], x1 = +_[1][0], y1 = +_[1][1]), reset()) : x0 == null ? null : [[x0, y0], [x1, y1]];
};
projection.scale = function(_) {
return arguments.length ? (k = +_, recenter()) : k;
};
projection.translate = function(_) {
return arguments.length ? (x = +_[0], y = +_[1], recenter()) : [x, y];
};
projection.center = function(_) {
return arguments.length ? (lambda = _[0] % 360 * radians, phi = _[1] % 360 * radians, recenter()) : [lambda * degrees, phi * degrees];
};
projection.rotate = function(_) {
return arguments.length ? (deltaLambda = _[0] % 360 * radians, deltaPhi = _[1] % 360 * radians, deltaGamma = _.length > 2 ? _[2] % 360 * radians : 0, recenter()) : [deltaLambda * degrees, deltaPhi * degrees, deltaGamma * degrees];
};
projection.precision = function(_) {
return arguments.length ? (projectResample = resample(projectTransform, delta2 = _ * _), reset()) : sqrt(delta2);
};
projection.fitExtent = function(extent, object) {
return fitExtent(projection, extent, object);
};
projection.fitSize = function(size, object) {
return fitSize(projection, size, object);
};
projection.fitWidth = function(width, object) {
return fitWidth(projection, width, object);
};
projection.fitHeight = function(height, object) {
return fitHeight(projection, height, object);
};
function recenter() {
projectRotate = compose(rotate = rotateRadians(deltaLambda, deltaPhi, deltaGamma), project);
var center = project(lambda, phi);
dx = x - center[0] * k;
dy = y + center[1] * k;
return reset();
}
function reset() {
cache = cacheStream = null;
return projection;
}
return function() {
project = projectAt.apply(this, arguments);
projection.invert = project.invert && invert;
return recenter();
};
}
function conicProjection(projectAt) {
var phi0 = 0,
phi1 = pi / 3,
m = projectionMutator(projectAt),
p = m(phi0, phi1);
p.parallels = function(_) {
return arguments.length ? m(phi0 = _[0] * radians, phi1 = _[1] * radians) : [phi0 * degrees, phi1 * degrees];
};
return p;
}
function cylindricalEqualAreaRaw(phi0) {
var cosPhi0 = cos(phi0);
function forward(lambda, phi) {
return [lambda * cosPhi0, sin(phi) / cosPhi0];
}
forward.invert = function(x, y) {
return [x / cosPhi0, asin(y * cosPhi0)];
};
return forward;
}
function conicEqualAreaRaw(y0, y1) {
var sy0 = sin(y0), n = (sy0 + sin(y1)) / 2;
// Are the parallels symmetrical around the Equator?
if (abs(n) < epsilon) return cylindricalEqualAreaRaw(y0);
var c = 1 + sy0 * (2 * n - sy0), r0 = sqrt(c) / n;
function project(x, y) {
var r = sqrt(c - 2 * n * sin(y)) / n;
return [r * sin(x *= n), r0 - r * cos(x)];
}
project.invert = function(x, y) {
var r0y = r0 - y;
return [atan2(x, abs(r0y)) / n * sign(r0y), asin((c - (x * x + r0y * r0y) * n * n) / (2 * n))];
};
return project;
}
var conicEqualArea = function() {
return conicProjection(conicEqualAreaRaw)
.scale(155.424)
.center([0, 33.6442]);
};
var albers = function() {
return conicEqualArea()
.parallels([29.5, 45.5])
.scale(1070)
.translate([480, 250])
.rotate([96, 0])
.center([-0.6, 38.7]);
};
// The projections must have mutually exclusive clip regions on the sphere,
// as this will avoid emitting interleaving lines and polygons.
function multiplex(streams) {
var n = streams.length;
return {
point: function(x, y) { var i = -1; while (++i < n) streams[i].point(x, y); },
sphere: function() { var i = -1; while (++i < n) streams[i].sphere(); },
lineStart: function() { var i = -1; while (++i < n) streams[i].lineStart(); },
lineEnd: function() { var i = -1; while (++i < n) streams[i].lineEnd(); },
polygonStart: function() { var i = -1; while (++i < n) streams[i].polygonStart(); },
polygonEnd: function() { var i = -1; while (++i < n) streams[i].polygonEnd(); }
};
}
// A composite projection for the United States, configured by default for
// 960×500. The projection also works quite well at 960×600 if you change the
// scale to 1285 and adjust the translate accordingly. The set of standard
// parallels for each region comes from USGS, which is published here:
// http://egsc.usgs.gov/isb/pubs/MapProjections/projections.html#albers
var albersUsa = function() {
var cache,
cacheStream,
lower48 = albers(), lower48Point,
alaska = conicEqualArea().rotate([154, 0]).center([-2, 58.5]).parallels([55, 65]), alaskaPoint, // EPSG:3338
hawaii = conicEqualArea().rotate([157, 0]).center([-3, 19.9]).parallels([8, 18]), hawaiiPoint, // ESRI:102007
point, pointStream = {point: function(x, y) { point = [x, y]; }};
function albersUsa(coordinates) {
var x = coordinates[0], y = coordinates[1];
return point = null, (lower48Point.point(x, y), point)
|| (alaskaPoint.point(x, y), point)
|| (hawaiiPoint.point(x, y), point);
}
albersUsa.invert = function(coordinates) {
var k = lower48.scale(),
t = lower48.translate(),
x = (coordinates[0] - t[0]) / k,
y = (coordinates[1] - t[1]) / k;
return (y >= 0.120 && y < 0.234 && x >= -0.425 && x < -0.214 ? alaska
: y >= 0.166 && y < 0.234 && x >= -0.214 && x < -0.115 ? hawaii
: lower48).invert(coordinates);
};
albersUsa.stream = function(stream) {
return cache && cacheStream === stream ? cache : cache = multiplex([lower48.stream(cacheStream = stream), alaska.stream(stream), hawaii.stream(stream)]);
};
albersUsa.precision = function(_) {
if (!arguments.length) return lower48.precision();
lower48.precision(_), alaska.precision(_), hawaii.precision(_);
return reset();
};
albersUsa.scale = function(_) {
if (!arguments.length) return lower48.scale();
lower48.scale(_), alaska.scale(_ * 0.35), hawaii.scale(_);
return albersUsa.translate(lower48.translate());
};
albersUsa.translate = function(_) {
if (!arguments.length) return lower48.translate();
var k = lower48.scale(), x = +_[0], y = +_[1];
lower48Point = lower48
.translate(_)
.clipExtent([[x - 0.455 * k, y - 0.238 * k], [x + 0.455 * k, y + 0.238 * k]])
.stream(pointStream);
alaskaPoint = alaska
.translate([x - 0.307 * k, y + 0.201 * k])
.clipExtent([[x - 0.425 * k + epsilon, y + 0.120 * k + epsilon], [x - 0.214 * k - epsilon, y + 0.234 * k - epsilon]])
.stream(pointStream);
hawaiiPoint = hawaii
.translate([x - 0.205 * k, y + 0.212 * k])
.clipExtent([[x - 0.214 * k + epsilon, y + 0.166 * k + epsilon], [x - 0.115 * k - epsilon, y + 0.234 * k - epsilon]])
.stream(pointStream);
return reset();
};
albersUsa.fitExtent = function(extent, object) {
return fitExtent(albersUsa, extent, object);
};
albersUsa.fitSize = function(size, object) {
return fitSize(albersUsa, size, object);
};
albersUsa.fitWidth = function(width, object) {
return fitWidth(albersUsa, width, object);
};
albersUsa.fitHeight = function(height, object) {
return fitHeight(albersUsa, height, object);
};
function reset() {
cache = cacheStream = null;
return albersUsa;
}
return albersUsa.scale(1070);
};
function azimuthalRaw(scale) {
return function(x, y) {
var cx = cos(x),
cy = cos(y),
k = scale(cx * cy);
return [
k * cy * sin(x),
k * sin(y)
];
}
}
function azimuthalInvert(angle) {
return function(x, y) {
var z = sqrt(x * x + y * y),
c = angle(z),
sc = sin(c),
cc = cos(c);
return [
atan2(x * sc, z * cc),
asin(z && y * sc / z)
];
}
}
var azimuthalEqualAreaRaw = azimuthalRaw(function(cxcy) {
return sqrt(2 / (1 + cxcy));
});
azimuthalEqualAreaRaw.invert = azimuthalInvert(function(z) {
return 2 * asin(z / 2);
});
var azimuthalEqualArea = function() {
return projection(azimuthalEqualAreaRaw)
.scale(124.75)
.clipAngle(180 - 1e-3);
};
var azimuthalEquidistantRaw = azimuthalRaw(function(c) {
return (c = acos(c)) && c / sin(c);
});
azimuthalEquidistantRaw.invert = azimuthalInvert(function(z) {
return z;
});
var azimuthalEquidistant = function() {
return projection(azimuthalEquidistantRaw)
.scale(79.4188)
.clipAngle(180 - 1e-3);
};
function mercatorRaw(lambda, phi) {
return [lambda, log(tan((halfPi + phi) / 2))];
}
mercatorRaw.invert = function(x, y) {
return [x, 2 * atan(exp(y)) - halfPi];
};
var mercator = function() {
return mercatorProjection(mercatorRaw)
.scale(961 / tau);
};
function mercatorProjection(project) {
var m = projection(project),
center = m.center,
scale = m.scale,
translate = m.translate,
clipExtent = m.clipExtent,
x0 = null, y0, x1, y1; // clip extent
m.scale = function(_) {
return arguments.length ? (scale(_), reclip()) : scale();
};
m.translate = function(_) {
return arguments.length ? (translate(_), reclip()) : translate();
};
m.center = function(_) {
return arguments.length ? (center(_), reclip()) : center();
};
m.clipExtent = function(_) {
return arguments.length ? (_ == null ? x0 = y0 = x1 = y1 = null : (x0 = +_[0][0], y0 = +_[0][1], x1 = +_[1][0], y1 = +_[1][1]), reclip()) : x0 == null ? null : [[x0, y0], [x1, y1]];
};
function reclip() {
var k = pi * scale(),
t = m(rotation(m.rotate()).invert([0, 0]));
return clipExtent(x0 == null
? [[t[0] - k, t[1] - k], [t[0] + k, t[1] + k]] : project === mercatorRaw
? [[Math.max(t[0] - k, x0), y0], [Math.min(t[0] + k, x1), y1]]
: [[x0, Math.max(t[1] - k, y0)], [x1, Math.min(t[1] + k, y1)]]);
}
return reclip();
}
function tany(y) {
return tan((halfPi + y) / 2);
}
function conicConformalRaw(y0, y1) {
var cy0 = cos(y0),
n = y0 === y1 ? sin(y0) : log(cy0 / cos(y1)) / log(tany(y1) / tany(y0)),
f = cy0 * pow(tany(y0), n) / n;
if (!n) return mercatorRaw;
function project(x, y) {
if (f > 0) { if (y < -halfPi + epsilon) y = -halfPi + epsilon; }
else { if (y > halfPi - epsilon) y = halfPi - epsilon; }
var r = f / pow(tany(y), n);
return [r * sin(n * x), f - r * cos(n * x)];
}
project.invert = function(x, y) {
var fy = f - y, r = sign(n) * sqrt(x * x + fy * fy);
return [atan2(x, abs(fy)) / n * sign(fy), 2 * atan(pow(f / r, 1 / n)) - halfPi];
};
return project;
}
var conicConformal = function() {
return conicProjection(conicConformalRaw)
.scale(109.5)
.parallels([30, 30]);
};
function equirectangularRaw(lambda, phi) {
return [lambda, phi];
}
equirectangularRaw.invert = equirectangularRaw;
var equirectangular = function() {
return projection(equirectangularRaw)
.scale(152.63);
};
function conicEquidistantRaw(y0, y1) {
var cy0 = cos(y0),
n = y0 === y1 ? sin(y0) : (cy0 - cos(y1)) / (y1 - y0),
g = cy0 / n + y0;
if (abs(n) < epsilon) return equirectangularRaw;
function project(x, y) {
var gy = g - y, nx = n * x;
return [gy * sin(nx), g - gy * cos(nx)];
}
project.invert = function(x, y) {
var gy = g - y;
return [atan2(x, abs(gy)) / n * sign(gy), g - sign(n) * sqrt(x * x + gy * gy)];
};
return project;
}
var conicEquidistant = function() {
return conicProjection(conicEquidistantRaw)
.scale(131.154)
.center([0, 13.9389]);
};
function gnomonicRaw(x, y) {
var cy = cos(y), k = cos(x) * cy;
return [cy * sin(x) / k, sin(y) / k];
}
gnomonicRaw.invert = azimuthalInvert(atan);
var gnomonic = function() {
return projection(gnomonicRaw)
.scale(144.049)
.clipAngle(60);
};
function scaleTranslate(kx, ky, tx, ty) {
return kx === 1 && ky === 1 && tx === 0 && ty === 0 ? identity : transformer({
point: function(x, y) {
this.stream.point(x * kx + tx, y * ky + ty);
}
});
}
var identity$1 = function() {
var k = 1, tx = 0, ty = 0, sx = 1, sy = 1, transform$$1 = identity, // scale, translate and reflect
x0 = null, y0, x1, y1, // clip extent
postclip = identity,
cache,
cacheStream,
projection;
function reset() {
cache = cacheStream = null;
return projection;
}
return projection = {
stream: function(stream) {
return cache && cacheStream === stream ? cache : cache = transform$$1(postclip(cacheStream = stream));
},
postclip: function(_) {
return arguments.length ? (postclip = _, x0 = y0 = x1 = y1 = null, reset()) : postclip;
},
clipExtent: function(_) {
return arguments.length ? (postclip = _ == null ? (x0 = y0 = x1 = y1 = null, identity) : clipRectangle(x0 = +_[0][0], y0 = +_[0][1], x1 = +_[1][0], y1 = +_[1][1]), reset()) : x0 == null ? null : [[x0, y0], [x1, y1]];
},
scale: function(_) {
return arguments.length ? (transform$$1 = scaleTranslate((k = +_) * sx, k * sy, tx, ty), reset()) : k;
},
translate: function(_) {
return arguments.length ? (transform$$1 = scaleTranslate(k * sx, k * sy, tx = +_[0], ty = +_[1]), reset()) : [tx, ty];
},
reflectX: function(_) {
return arguments.length ? (transform$$1 = scaleTranslate(k * (sx = _ ? -1 : 1), k * sy, tx, ty), reset()) : sx < 0;
},
reflectY: function(_) {
return arguments.length ? (transform$$1 = scaleTranslate(k * sx, k * (sy = _ ? -1 : 1), tx, ty), reset()) : sy < 0;
},
fitExtent: function(extent, object) {
return fitExtent(projection, extent, object);
},
fitSize: function(size, object) {
return fitSize(projection, size, object);
},
fitWidth: function(width, object) {
return fitWidth(projection, width, object);
},
fitHeight: function(height, object) {
return fitHeight(projection, height, object);
}
};
};
function naturalEarth1Raw(lambda, phi) {
var phi2 = phi * phi, phi4 = phi2 * phi2;
return [
lambda * (0.8707 - 0.131979 * phi2 + phi4 * (-0.013791 + phi4 * (0.003971 * phi2 - 0.001529 * phi4))),
phi * (1.007226 + phi2 * (0.015085 + phi4 * (-0.044475 + 0.028874 * phi2 - 0.005916 * phi4)))
];
}
naturalEarth1Raw.invert = function(x, y) {
var phi = y, i = 25, delta;
do {
var phi2 = phi * phi, phi4 = phi2 * phi2;
phi -= delta = (phi * (1.007226 + phi2 * (0.015085 + phi4 * (-0.044475 + 0.028874 * phi2 - 0.005916 * phi4))) - y) /
(1.007226 + phi2 * (0.015085 * 3 + phi4 * (-0.044475 * 7 + 0.028874 * 9 * phi2 - 0.005916 * 11 * phi4)));
} while (abs(delta) > epsilon && --i > 0);
return [
x / (0.8707 + (phi2 = phi * phi) * (-0.131979 + phi2 * (-0.013791 + phi2 * phi2 * phi2 * (0.003971 - 0.001529 * phi2)))),
phi
];
};
var naturalEarth1 = function() {
return projection(naturalEarth1Raw)
.scale(175.295);
};
function orthographicRaw(x, y) {
return [cos(y) * sin(x), sin(y)];
}
orthographicRaw.invert = azimuthalInvert(asin);
var orthographic = function() {
return projection(orthographicRaw)
.scale(249.5)
.clipAngle(90 + epsilon);
};
function stereographicRaw(x, y) {
var cy = cos(y), k = 1 + cos(x) * cy;
return [cy * sin(x) / k, sin(y) / k];
}
stereographicRaw.invert = azimuthalInvert(function(z) {
return 2 * atan(z);
});
var stereographic = function() {
return projection(stereographicRaw)
.scale(250)
.clipAngle(142);
};
function transverseMercatorRaw(lambda, phi) {
return [log(tan((halfPi + phi) / 2)), -lambda];
}
transverseMercatorRaw.invert = function(x, y) {
return [-y, 2 * atan(exp(x)) - halfPi];
};
var transverseMercator = function() {
var m = mercatorProjection(transverseMercatorRaw),
center = m.center,
rotate = m.rotate;
m.center = function(_) {
return arguments.length ? center([-_[1], _[0]]) : (_ = center(), [_[1], -_[0]]);
};
m.rotate = function(_) {
return arguments.length ? rotate([_[0], _[1], _.length > 2 ? _[2] + 90 : 90]) : (_ = rotate(), [_[0], _[1], _[2] - 90]);
};
return rotate([0, 0, 90])
.scale(159.155);
};
exports.geoArea = area;
exports.geoBounds = bounds;
exports.geoCentroid = centroid;
exports.geoCircle = circle;
exports.geoClipAntimeridian = clipAntimeridian;
exports.geoClipCircle = clipCircle;
exports.geoClipExtent = extent;
exports.geoClipRectangle = clipRectangle;
exports.geoContains = contains;
exports.geoDistance = distance;
exports.geoGraticule = graticule;
exports.geoGraticule10 = graticule10;
exports.geoInterpolate = interpolate;
exports.geoLength = length;
exports.geoPath = index;
exports.geoAlbers = albers;
exports.geoAlbersUsa = albersUsa;
exports.geoAzimuthalEqualArea = azimuthalEqualArea;
exports.geoAzimuthalEqualAreaRaw = azimuthalEqualAreaRaw;
exports.geoAzimuthalEquidistant = azimuthalEquidistant;
exports.geoAzimuthalEquidistantRaw = azimuthalEquidistantRaw;
exports.geoConicConformal = conicConformal;
exports.geoConicConformalRaw = conicConformalRaw;
exports.geoConicEqualArea = conicEqualArea;
exports.geoConicEqualAreaRaw = conicEqualAreaRaw;
exports.geoConicEquidistant = conicEquidistant;
exports.geoConicEquidistantRaw = conicEquidistantRaw;
exports.geoEquirectangular = equirectangular;
exports.geoEquirectangularRaw = equirectangularRaw;
exports.geoGnomonic = gnomonic;
exports.geoGnomonicRaw = gnomonicRaw;
exports.geoIdentity = identity$1;
exports.geoProjection = projection;
exports.geoProjectionMutator = projectionMutator;
exports.geoMercator = mercator;
exports.geoMercatorRaw = mercatorRaw;
exports.geoNaturalEarth1 = naturalEarth1;
exports.geoNaturalEarth1Raw = naturalEarth1Raw;
exports.geoOrthographic = orthographic;
exports.geoOrthographicRaw = orthographicRaw;
exports.geoStereographic = stereographic;
exports.geoStereographicRaw = stereographicRaw;
exports.geoTransverseMercator = transverseMercator;
exports.geoTransverseMercatorRaw = transverseMercatorRaw;
exports.geoRotation = rotation;
exports.geoStream = geoStream;
exports.geoTransform = transform;
Object.defineProperty(exports, '__esModule', { value: true });
})));